900 resultados para Sugar apple


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus×domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable operation of a sugar factory boiler station is essential for efficient and timely processing of the cane supply. Sugar factory boilers have to contend with changes in fuel quality caused by variations in performance of the extraction station, different cane varieties and associated agronomic factors along with fluctuations in factory steam demand. These variations can affect the stability of combustion in boiler furnaces leading to reductions in boiler steam output and large furnace pressure fluctuations that can cause serious damage. This paper investigates the causes of unstable combustion, discusses aspects of boiler design that make a boiler more susceptible to unstable combustion and uses modelling to evaluate different options for improving combustion stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer modelling has been used extensively in some processes in the sugar industry to achieve significant gains. This paper reviews the investigations carried out over approximately the last twenty five years,including the successes but also areas where problems and delays have been encountered. In that time the capability of both hardware and software have increased dramatically. For some processes such as cane cleaning, cane billet preparation, and sugar drying, the application of computer modelling towards improved equipment design and operation has been quite limited. A particular problem has been the large number of particles and particle interactions in these applications, which, if modelled individually, is computationally very intensive. Despite the problems, some attempts have already been made and knowledge gained on tackling these issues. Even if the detailed modelling is wanting, a model can provide some useful insights into the processes. Some options to attack these more intensive problems include the use of commercial software packages, which are usually very robust and allow the addition of user-supplied subroutines to adapt the software to particular problems. Suppliers of such software usually charge a fee per CPU licence, which is often problematic for large problems that require the use of many CPUs. Another option to consider is using open source software that has been developed with the capability to access large parallel resources. Such software has the added advantage of access to the full internal coding. This paper identifies and discusses the detail of software options with the potential capability to achieve improvements in the sugar industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An International Society of Sugar Cane Technologists (ISSCT) Engineering Workshop was held in Piracicaba, Brazil from 30 June to 4 July 2008. The theme of the workshop was Design, manufacturing and maintenance of sugar mill equipment. The workshop consisted of a series of technical sessions and site visits. The Brazilian sugar industry is growing rapidly. The growth has occurred as the result of the sugar industry’s position as a key provider of renewable energy in the form of ethanol and, more recently, electricity. The increased focus on electricity is seeing investment in high pressure (100 bar) boilers, cane cleaning plants that allow an increased biomass supply from trash and digesters that produce biogas from dunder. It is clear that the Brazilian sugar industry has a well defined place in the country’s future. The ISSCT workshop provided a good opportunity to gain information from equipment suppliers and discuss new technology that may have application in Australia. The new technologies of interest included IMCO sintered carbide shredder hammer tips, Fives Cail MillMax mills, planetary mill gearboxes, Bosch Projects chainless diffusers, Fives Cail Zuka centrifugals and Vaperma Siftek membrane systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ISSCT Engineering Workshop 2008 in Brazil was well attended with 62 participants including 39 overseas visitors from 15 countries. The workshop addressed the theme Design, manufacturing and maintenance of sugar mill equipment. From the technical sessions, the following conclusions were drawn: • Several speakers articulated a shared vision of the future of the Brazilian sugar industry. This shared vision gives considerable confidence that the vision can become a reality. • There is an increased focus on energy products. As a result, the reduction of factory energy consumption in order to maximise the energy available for products is also a focus. • New equipment and products are being developed with reduced power consumption, lower capital and maintenance costs, and better performance. • Methods presented for reducing maintenance costs included the use of a maintenance management system, condition monitoring and material selection. The workshop was held in conjunction with Piracicaba’s annual SIMTEC exhibition for the sugar and alcohol industries that provides a forum for technical presentations and discussion, and showcases products and services from manufacturers and service providers. In return for holding the workshop in conjunction with SIMTEC, SIMTEC provided sponsorship for the workshop, including paying travel and accommodation costs for two invited speakers, and organisation for the workshop. The ISSCT and SIMTEC technical programs were arranged so that their technical sessions did not clash, and the ISSCT program was extended a day to provide an opportunity for ISSCT participants to attend the SIMTEC exhibition. Informal feedback from workshop participants suggested that the arrangement between ISSCT and SIMTEC worked well. Site visits to two manufacturing facilities and two sugar mills were arranged as part of the workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water removal during drying depends on the pathway of water migration from food materials. Moreover, the water removal rate also depends on the characteristics of the cell wall of plant tissue. In this study, the influence of cell wall properties (such as moisture distribution, stiffness, thickness and cell dimension) on porosity and shrinkage of dried product was investigated. Cell wall stiffness depends on a complex combination of plant cell microstructure, composition of food materials and the water-holding capacity of the cell. In this work, a preliminary investigation of the cell wall properties of apple was conducted in order to predict changes of porosity and shrinkage during drying. Cell wall characteristics of two types of apple (Granny Smith and Red Delicious) were investigated under convective drying to correlate with porosity and shrinkage. A scanning electron microscope (SEM), 2kN Intron, pycnometer and ImageJ software were used in order to measure and analyse cell characteristics, water holding capacity of cell walls, porosity and shrinkage. The cell firmness of the Red Delicious apple was found to be higher than for Granny Smith apples. A remarkable relationship was observed between cell wall characteristics when compare with heat and mass transfer characteristics. It was also found that the evolution of porosity and shrinkage are noticeably influenced by the nature of the cell wall during convective drying. This study has revealed a better understanding of porosity and the shrinkage of dried food at microscopy (cell) level, and will provide better insights to attain energy-effective drying processes and improved quality of dried foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.