967 resultados para Strategic operations
Resumo:
The firm is faced with a decision concerning the nature of intra-organizational exchange relationships with internal human resources and the nature or inter-organizational exchange relationships with market firms. In both situations, the firm can develop an exchange that ranges from a discrete exchange to a relational exchange. Transaction Cost Economics (TCE) and the Resource Dependency View (RDV) represent alternative efficiency-based explanations fo the nature of the exchange relationship. The aim of the paper is to test these two theories in respect of air conditioning maintenance in retail centres. Multiple sources of information are genereated from case studies of Australian retail centres to test these theories in respoect of internalized operations management (concerning strategic aspects of air conditioning maintenance) and externalized planned routine air conditioning maintenance. The analysis of the data centres on pattern matching. It is concluded that the data supports TCE - on the basis of a development in TCE's contractual schema. Further research is suggested towards taking a pluralistic stance and developing a combined efficiency and power hypothesis - upon which Williamson has speculated. For practice, the conclusions also offer a timely cautionary note concerning the adoption of one approach in all exchange relationships.
Resumo:
This paper draws on a study of government initiat ives aimed at facilitating economic development, specifically the Multifunction Polis Feasibility Study involving the governments and business enterprises of Australia and Japan (1987-1991). Large scale projects that involve collaboration between gove rnment and business (termed: large scale collaborative venture LSCV)are identified as one aspect of competing in the new economy . The study pursued the research propos ition that a LSCV can be effectively facilitated by following a theory based process similar to those in corporate practice. An approach to managing such ventures is outlined, based on strategic marketing theory that may enhance their success and thereby help countries part icipate more successfully in global competition through such ventures.
Resumo:
This paper relates to government initiatives which aim at advancing their country’s economic development and investor attractiveness. It identifies large scale projects that involve collaboration between government and business (termed: large scale collaborative venture – LSCV) as one aspect of competing in the new economy. The study pursued the research proposition that a LSCV can be effectively facilitated by following a theory based process similar to what is used in corporate practice. An approach to managing such ventures is outlined, based on strategic marketing theory applied to a major project, the Multifunction Polis. It is proposed that such an approach may enhance the success of a collaborative venture and thereby help countries participate more successfully in global competition through such ventures.
Resumo:
Purpose – The aim of this paper is to investigate the ways of best managing city-regions’ valuable tangible and intangible assets while pursuing a knowledge-based urban development that is sustainable and competitive. Design/methodology/approach – The paper provides a theoretical framework to conceptualise a new strategic planning mechanism, knowledge-based strategic planning, which has been emerged as a planning mechanism for the knowledge-based urban development of post-industrial city-regions. Originality/value – The paper develops a planning framework entitled 6K1C for knowledge-based strategic planning to be used in the analysis of city-regions’ tangible and intangible assets. Practical implications – The paper discusses the importance of asset mapping of cityregions, and explores the ways of successfully managing city-regions’ tangible/intangible assets to achieve an urban development that is sustainable and knowledge-based. Keywords – Knowledge-based urban development, Knowledge-based strategic planning, Tangible assets, Intangible assets, City-regions. Paper type – Academic Research Paper
Value-oriented process modeling : integrating financial perspectives into business process re-design
Resumo:
Purpose – Financial information about costs and return on investments are of key importance to strategic decision-making but also in the context of process improvement or business engineering. In this paper we propose a value-oriented approach to business process modeling based on key concepts and metrics from operations and financial management, to aid decision making in process re-design projects on the basis of process models. Design/methodology/approach – We suggest a theoretically founded extension to current process modeling approaches, and delineate a framework as well as methodical support to incorporate financial information into process re-design. We use two case studies to evaluate the suggested approach. Findings – Based on two case studies, we show that the value-oriented process modeling approach facilitates and improves managerial decision-making in the context of process re-design. Research limitations / implications – We present design work and two case studies. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications – We show how our approach enables decision makers to make investment decisions in process re-design projects, and also how other decisions, for instance in the context of enterprise architecture design, can be facilitated. Originality/value – This study reports on an attempt to integrate financial considerations into the act of process modeling, in order to provide more comprehensive decision making support in process re-design projects.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.