945 resultados para SILICA COMPOSITE MEMBRANES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic-inorganic composite membranes were prepared from membranes of the bio-polymer bacterial cellulose (BC) and organic-inorganic sal composed of nanoparticulate boehmite and epoxi modified siloxane. Bacterial cellulose membranes are obtained in a highly hydrated state (1% cellulose and 99% cellulose) from cultures of Gluconacetobacter xylinus and could be used in the never-dried or in the dried state. Depending on the use of dried or never-dried BC membranes two main kinds of composites were obtained. In the first one dried BC membranes coated with the hybrid sol have lead to transparent membranes displaying a hi-phase structure where the two components could be easily distinguished, with individual structures preserved. A decrease was observed for tensile strength (50.5 MPa) and Young's Modulus (2.8 GPa) when compared to pure BC membrane (112.5 MPa and 12.7 GPa). Elongation at break was observed to increase (2.5% against 1.5% observed for BC). When never-dried BC membranes were used transparent membranes were also obtained, however an improvement was observed for mechanical properties (tensile strength - 116 MPa and Young's Modulus - 13.7 GPa). A lower value was obtained for the elongation at break (1.3%). In the last case the interaction between the two-phases lead to changes in the cellulose crystallinity as shown by X rays diffraction results. Multifunctional transparent membranes displaying the cellulose structure in one side and the boehmite-siloxane structure at the opposite face could find special applications in opto-electronics or biomedical areas taking advantage of the different chemical nature of the two components. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterisation of inorganic membranes for the hydrogen purification from steam reforming gas. Composite membranes based on porous inorganic supports coated with palladium silver alloys and ceramic membranes have been analysed. A brief resume of theoretical laws governing transport of gases through dense and porous inorganic membranes and an overview on different methods to prepare inorganic membranes has been also reported. A description of the experimental apparatus used for the characterisation of gas permeability properties has been reported. The device used permits to evaluate transport properties in a wide range of temperatures (till 500°C) and pressures (till 15 bar). Data obtained from experimental campaigns reveal a good agreement with Sievert law for hydrogen transport through dense palladium based membranes while different transport mechanisms, such as Knudsen diffusion and Hagen-Poiseuille flow, have been observed for porous membranes and for palladium silver alloy ones with pinholes in the metal layer. Mixtures permeation experiments reveal also concentration polarisation phenomena and hydrogen permeability reduction due to carbon monoxide adsorption on metal surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit umfasst die Synthese und Charakterisierung phosphonsäurehaltiger, organischer Kristalle als ionenleitende Verbindungen in Brennstoffzellen-Anwendungen. Sie zielt dabei einerseits auf die Darstellung von protonenleitenden Polyphenylenverbindungen und deren Verwendung als Linker für den Aufbau protonenleitender Aluminium-Phosphonat-Netzwerke ab und behandelt andererseits die Einführung stark polarer Phosphonsäuregruppen in einen diskreten Nanographenkern sowie deren Einfluss auf die ionen- und elektronenleitenden Eigenschaften, um diese als gemischt-leitende Kompatibilisatoren an der isolierenden Elektrode/ Membran-Grenzfläche in einer Brennstoffzelle zu verwenden. Am Beispiel eines phosphonsäurefunktionalisierten, phenylenisch-expandierten Hexaphenylbenzols konnte ein solvothermisch stabiler Protonenleiter mit einer Selbstorganisation in kolumnare, supramolekulare Strukturen und hoher, temperaturunabhängiger Leitfähigkeit mit dominierendem Grotthuss-Anteil präsentiert werden. Durch einen Wechsel dieser 1D-radialen Phosphonsäureanordnung in der Molekülhülle hin zu 2D- und 3D-H2PO3-funktionalisierten, dendritischen Stäbchen- bzw. Kugelstrukturen konnte gezeigt werden, dass eine kolumnare Molekülanordnung jedoch kein notwendiges Kriterium für einen Grotthuss-artigen Protonentransport darstellt. Durch die mehrdimensionale Orientierung der Phosphonsäuren in der Außenhülle der Dendrimere garantieren die synthetisierten Strukturen hochaggregierte Phosphonsäurecluster, die als dichtes Säurekontinuum die eigentlichen protonenleitfähigen Kanäle darstellen und somit als entscheidendes Kriterium für das Auftreten eines Grotthuss-artigen Mechanismus definiert werden müssen. Eine signifikante Erhöhung der Leitfähigkeit konnte durch den Aufbau poröser, organisch-anorganischer Netzwerke (Al-HPB-NETs) über Komplexierung einer unterstöchiometrischen Menge an Aluminium-Kationen mit der Polyphosphonsäureverbindung Hexakis(p-phosphonatophenyl)benzol als Linkereinheit erfolgen, die anschließend mit kleinen intrinsischen Protonenleitern wie Phosphonsäure dotiert wurden. Diese dotierten Netzwerke wiesen außergewöhnliche Leitfähigkeit auf, da sie die σ-Werte des Referenzpolymers Nafion® bereits in einem Temperaturbereich oberhalb von 135°C übertrafen, aber gleichzeitig ein sehr gutes Säureretentionsverhalten von einem Gew.-% Säuredesorption über eine Immersionsdauer von 14 h gegenüber wässrigem Medium zeigten. Durch Mischen dieser Aluminiumphosphonate mit einer dotierten Polymermatrix wie PBI konnten synergistische Effekte durch zusätzliche attraktive H-Brückenbindungen zwischen molekular angebundener Phosphonsäure und mobiler H3PO4 an Hand eines signifikanten Leitfähigkeitsanstiegs für die resultierenden Membranen beobachtet werden. Die Protonenleitfähigkeit lag in diesen Materialien in dem gesamten untersuchten Temperaturbereich oberhalb von Nafion®. Durch das Einbringen der NETs in PBI konnte ebenfalls die Säureretention von PBI um etwa 9 % bei kurzen Immersionszeiten (bis 1 min) verbessert werden. Darüber hinaus wurde in der vorliegenden Arbeit die synthetische Kombination eines hydrophoben, elektronenleitenden Nanographenkerns mit einer, durch eine isolierende Peripherie getrennten, stark polaren, protonenleitenden Außenhülle realisiert. Am Beispiel von zwei phosphonsäurefunktionalisierten Triphenylenen, die sich in Länge und Planarität der gewählten Peripheriebausteine unterschieden, sollten polycyclische aromatische Kohlenwasserstoffe mit gemischt protonen- und elektronenleitenden Eigenschaften hergestellt werden, die über Impedanzspektroskopie und Vierpunktmessungen untersucht wurden. Da es sich bei der Anwendung solcher gemischtleitenden Verbindungen um grenz-flächenaktive Substanzen handelt, die das ohne verbesserte Anbindung bestehende Dielektrikum zwischen Elektrode und protonenleitender Membran überbrücken sollen, wurde die Untersuchung eines möglichen Elektronentransportes durch eine Molekülmonolage ebenfalls über kombinatorische STM- und STS-Technik durchgeführt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho envolveu a produção de membranas compósitas para separação de CO2 a altas temperaturas. Os compósitos habituais são constituídos por duas fases, uma cerâmica, de céria dopada com gadolínio (Ce0.9Gd0.1O0.95 - CGO) condutora de iões óxido, que funciona como suporte da segunda fase composta por uma mistura eutética de carbonatos alcalinos (Li2CO3 e Na2CO3), que assegura o transporte de iões carbonato. O objetivo do trabalho prende-se com o estudo do transporte de iões através destes compósitos, por forma a perceber se os sais destes compósitos apresentam condução iónica singular ou condução mista. Neste sentido a resposta a esta questão teve por base a realização de ensaios de eficiência faradaica com recurso a amostras compósitas envolvendo matrizes de CGO (condutor de iões óxido) e de aluminato de lítio (não condutor de iões óxido). A preparação tanto de esqueletos porosos como de compósitos foi realizada tendo por base métodos e precursores semelhantes aos usados na literatura. Primeiramente efetuou-se o processamento dos esqueletos porosos para posteriormente impregnação com mistura eutética de carbonatos. Obtidos os compósitos estes foram caraterizados por microscopia de impedância e por microscopia eletrónica de varrimento de forma a serem submetidos mais tarde aos ensaios de eficiência faradaica. Os resultados de eficiência faradaica revelaram que na realidade existem processos de condução mista cuja importância depende das condições de operação da membrana.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the search for new materials with properties suitable for specific applications has increased the number of researches that aim to address market needs. The poly (methyl methacrylate) (PMMA) is one of the most important polymers of the family of polyacrylates and polymethacrylates, especially for its unique optical properties and weathering resistance, and exceptional hardness and gloss. The development of polymer composites by the addition of inorganic fillers to the PMMA matrix increases the potential use of this polymer in various fields of application. The most commonly used inorganic fillers are particles of silica (SiO2), modified clays, graphite and carbon nanotubes. The main objective of this work is the development of PMMA/SiO2 composites at different concentrations of SiO2, for new applications as engineering plastics. The composites were produced by extrusion of tubular film, and obtained via solution for application to commercial PMMA plates, and also by injection molding, for improved the abrasion and scratch resistance of PMMA without compromising transparency. The effects of the addition of silica particles in the polymer matrix properties were evaluated by the maximum tensile strength, hardness, abrasion and scratch resistance, in addition to preliminary characterization by torque rheometry and melt flow rate. The results indicated that it is possible to use silica particles in a PMMA matrix, and a higher silica concentration produced an increase of the abrasion and scratch resistance, hardness, and reduced tensile strength

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyvinyl butyral/functionalized mesoporous silica hybrid composite films have been fabricated by solution casting technique with various weight percentages of functionalized silica. A polyol (tripentaerythritol-electron rich component), which acts as an electron donor to the polymer backbone, was added to enhance the conductivity. The prepared composites were characterized by Fourier transformed infrared spectroscopy and the morphology was evaluated by scanning electron microscopy. Dielectric properties of these freestanding composites were studied using the two-probe method. The dielectric constant and impedance value decreased with the increase in applied frequency as well as with the increase in functionalized silica content in the polyvinyl butyral matrix. An increase in conductivity of the PVB/functionalized silica composites was also observed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A layered luminescent mesostructured thin film of silica-CTAB-Tb(acac)(3) composite has been synthesized by a dip-coating process through an in situ sol-gel method. The terbium (Tb3+) ion and beta-diketone organic ligand acetylacetone (acac) were introduced into the precursor solution, respectively. The as-synthesized composite film was transparent, colorless and possessed a layered structure. After the composite film was dried at 50 degreesC for a few minutes Tb(acac)(3) complex was synthesized in the mesostructured thin film, which can be indicated by the luminescence of the composite film under the UV lamp. The properties of the samples were characterized by XRD, absorption, Fourier transform infrared spectroscopy, and luminescent spectra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.