885 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep neural networks have recently gained popularity for improv- ing state-of-the-art machine learning algorithms in diverse areas such as speech recognition, computer vision and bioinformatics. Convolutional networks especially have shown prowess in visual recognition tasks such as object recognition and detection in which this work is focused on. Mod- ern award-winning architectures have systematically surpassed previous attempts at tackling computer vision problems and keep winning most current competitions. After a brief study of deep learning architectures and readily available frameworks and libraries, the LeNet handwriting digit recognition network study case is developed, and lastly a deep learn- ing network for playing simple videogames is reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important characteristic of virtual assembly is interaction. Traditional di-rect manipulation in virtual assembly relies on dynamic collision detection, which is very time-consuming and even impossible in desktop virtual assembly environment. Feature-matching isa critical process in harmonious virtual assembly, and is the premise of assembly constraint sens-ing. This paper puts forward an active object-based feature-matching perception mechanism and afeature-matching interactive computing process, both of which make the direct manipulation in vir-tual assembly break away from collision detection. They also help to enhance virtual environmentunderstandability of user intention and promote interaction performance. Experimental resultsshow that this perception mechanism can ensure that users achieve real-time direct manipulationin desktop virtual environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a series of psychophysical experiments that explore different aspects of the problem of object representation and recognition in human vision. Contrary to the paradigmatic view which holds that the representations are three-dimensional and object-centered, the results consistently support the notion of view-specific representations that include at most partial depth information. In simulated experiments that involved the same stimuli shown to the human subjects, computational models built around two-dimensional multiple-view representations replicated our main psychophysical results, including patterns of generalization errors and the time course of perceptual learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does the brain recognize three-dimensional objects? We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to generalize recognition for other views. Our results provide additional evidence in favor of with a recognition model that accomplishes view-invariant performance by storing a limited number of object views or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques, suitable for parallel implementation, for robust 2D model-based object recognition in the presence of sensor error are studied. Models and scene data are represented as local geometric features and robust hypothesis of feature matchings and transformations is considered. Bounds on the error in the image feature geometry are assumed constraining possible matchings and transformations. Transformation sampling is introduced as a simple, robust, polynomial-time, and highly parallel method of searching the space of transformations to hypothesize feature matchings. Key to the approach is that error in image feature measurement is explicitly accounted for. A Connection Machine implementation and experiments on real images are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.