1000 resultados para Reuss (Elder line)
Resumo:
Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements.
Resumo:
Transit Capacity Analysis critical to urban system Planning Design, Operation Productive Performance Analysis not so well detailed This study extends TRB’s & Vuchic’s work in this area
Resumo:
We seek to statistically inform the debate regarding the Australian Takeovers Panel’s ‘bright line’ policy towards break fees. Based on 313 takeovers from 2002 to 2006, 85 involving break fees, we find post-bid competition to be unrelated to break fee usage and inversely related to bid success. We also find that break fee usage has a detrimental effect on shareholder wealth as measured by both the final bid premium and abnormal returns. Therefore, although break fees appear to be neither anticompetitive nor coercive within the Australian context, they do appear to have had a deleterious effect on shareholder wealth.
Resumo:
‘Nobody knows anything’, said William Goldman of studio filmmaking. The rule is ever more apt as we survey the radical changes that digital distribution, along with the digitisation of production and exhibition, is wreaking on global film circulation. Digital Disruption: Cinema Moves On-line helps to make sense of what has happened in the short but turbulent history of on-line distribution. It provides a realistic assessment of the genuine and not-so-promising methods that have been tried to address the disruptions that moving from ‘analogue dollars’ to ‘digital cents’ has provoked in the film industry. Paying close attention to how the Majors have dealt with the challenges – often unsuccessfully – it focuses as much attention on innovations and practices outside the mainstream. Throughout, it is alive to, and showcases, important entrepreneurial innovations such as Mubi, Jaman, Withoutabox and IMDb. Written by leading academic commentators that have followed the fortunes of world cinema closely and passionately, as well as experienced hands close to the fluctuating fortunes of the industry, Digital Disruption: Cinema Moves On-line is an indispensable guide to great changes in film and its audiences.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team and other international researchers. In this vignette, Dr Martie-Louise Verreynne from the University of Queensland Business School summaries the findings from a paper written in conjunction with Sarel Gronum and Tim Kastelle from the UQ Business School that examined if networking really contributes to small firms' bottom line. Their findings show that unless networks are used for productive means, efforts to cultivate and maintain them may be wasteful.
Resumo:
Cognitive obstacles that arise in the teaching and learning of scalar line integrals, derived from cognitive aids provided to students when first learning about integration of single variable functions are described. A discussion of how and why the obstacles cause students problems is presented and possible strategies to overcome the obstacles are outlined.
Resumo:
A key part of corporate governance reforms in Australia, as represented by CLERP 9, addresses concerns over the audit function and the role of independent auditors in monitoring managers and providing useful information to stakeholders about the financial position of the company. In comparing the regulatory responses to auditor independence dilemmas, there have been claims that CLERP 9 is less ‘stringent’ than the reforms imposed by the Sarbanes Oxley Act in the US. This paper looks at three particular situations that have been the subject of recent reform to strengthen independence: the mandatory rotation of auditors, recruitment of former auditors as board members, and provision of non-audit services to clients. In each case, we compare the similarities and differences of the regulatory response between Australia and US, to distil the efficacy of the CLERP 9 approach.
Resumo:
In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.
Resumo:
In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.
Resumo:
To investigate the effects of adopting a pull system in assembly lines in contrast to a push system, simulation software called “ARENA” is used as a tool in order to present numerical results from both systems. Simulation scenarios are created to evaluate the effects of attributes changing in assembly systems, with influential factors including the change of manufacturing system (push system to pull system) and variation of demand. Moreover, pull system manufacturing consists of the addition attribute, which is the number of buffer storage. This paper will provide an analysis based on a previous case study, hence process time and workflow refer to the journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” [2]. The implementation of the pull system mechanism is to produce a system improvement in terms of the number of Work-In-Process (WIP), total time of products in the system, and the number of finished product inventory, while retaining the same throughput.
Resumo:
Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit