296 resultados para Queue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bus Rapid Transit (BRT) station is the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses maneuvering into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on BRT line capacity. This study uses microscopic traffic simulation modeling to treat the BRT station operation and to analyze the relationship between station bus capacity and BRT line bus capacity. First, the simulation model is developed for the limit state scenario and then a statistical model is defined and calibrated for a specified range of controlled scenarios of dwell time characteristics. A field survey was conducted to verify the parameters such as dwell time, clearance time and coefficient of variation of dwell time to obtain relevant station bus capacity. The proposed model for BRT bus capacity provides a better understanding of BRT line capacity and is useful to transit authorities in BRT planning, design and operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Victoria, as in other jurisdictions, there is very little research on the potential risks and benefits of lane filtering by motorcyclists, particularly from a road safety perspective. This on-road proof of concept study aimed to investigate whether and how lane filtering influences motorcycle rider situation awareness at intersections and to address factors that need to be considered for the design of a larger study in this area. Situation awareness refers to road users’ understanding of ‘what is going on’ around them and is a critical commodity for safe performance. Twenty-five experienced motorcyclists rode their own instrumented motorcycle around an urban test route in Melbourne whilst providing verbal protocols. Lane filtering occurred in 27% of 43 possible instances in which there were one or more vehicles in the traffic queue and the traffic lights were red on approach to the intersection. A network analysis procedure, based on the verbal protocols provided by motorcyclists, was used to identify differences in motorcyclist situation awareness between filtering and non-filtering events. Although similarities in situation awareness across filtering and nonfiltering motorcyclists were found, the analysis revealed some differences. For example, filtering motorcyclists placed more emphasis on the timing of the traffic light sequence and on their own actions when moving to the front of the traffic queue, whilst non-filtering motorcyclists paid greater attention to traffic moving through the intersection and approaching from behind. Based on the results of this study, the paper discusses some methodological and theoretical issues to be addressed in a larger study comparing situation awareness between filtering and non-filtering motorcyclists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we will examine passenger actions and activities at the security screening points of Australian domestic and international airports. Our findings and analysis provide a more complete understanding of the current airport passenger security screening experience. Data in this paper is comprised of field studies conducted at two Australian airports, one domestic and one international. Video data was collected by cameras situated either side of the security screening point. A total of one hundred and ninety-six passengers were observed. Two methods of analysis are used. First, the activities of passengers are coded and analysed to reveal the common activities at domestic and international security regimes and between quiet and busy periods. Second, observation of passenger activities is used to reveal uncommon aspects. The results show that passengers do more at security screening that being passively scanned. Passengers queue, unpack the required items from their bags and from their pockets, walk through the metal-detector, re-pack and occasionally return to be re-screened. For each of these activities, passengers must understand the procedures at the security screening point and must co-ordinate various actions and objects in time and space. Through this coordination passengers are active participants in making the security checkpoint function – they are co-producers of the security screening process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents mathematical models for BRT station operation, calibrated using microscopic simulation modelling. Models are presented for station capacity and bus queue length. No reliable model presently exists to estimate bus queue length. The proposed bus queue model is analogous to an unsignalized intersection queuing model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stations on Bus Rapid Transit (BRT) lines ordinarily control line capacity because they act as bottlenecks. At stations with passing lanes, congestion may occur when buses maneuvering into and out of the platform stopping lane interfere with bus flow, or when a queue of buses forms upstream of the station blocking inflow. We contend that, as bus inflow to the station area approaches capacity, queuing will become excessive in a manner similar to operation of a minor movement on an unsignalized intersection. This analogy is used to treat BRT station operation and to analyze the relationship between station queuing and capacity. In the first of three stages, we conducted microscopic simulation modeling to study and analyze operating characteristics of the station under near steady state conditions through output variables of capacity, degree of saturation and queuing. A mathematical model was then developed to estimate the relationship between average queue and degree of saturation and calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Finally, simulation results were calibrated and validated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated strategies for motorway congestion management from a different angle: that is, how to quickly recover motorway from congestion at the end of peak hours, given congestion cannot be eliminated due to excessive demand during the long peak hours nowadays. The project developed a zone recovery strategy using ramp metering for rapid congestion recovery, and a serious of traffic simulation investigations were included to evaluate the developed strategy. The results, from both microscopic and macroscopic simulation, demonstrated the effectiveness of the zone recovery strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several analytical methods for Dynamic System Optimum (DSO) assignment have been proposed but they are basically classified into two kinds. This chapter attempts to establish DSO by equilbrating the path dynamic marginal time (DMT). The authors analyze the path DMT for a single path with tandem bottlenecks and showed that the path DMT is not the simple summation of DMT associated with each bottleneck along the path. Next, the authors examined the DMT of several paths passing through a common bottleneck. It is shown that the externality at the bottleneck is shared by the paths in proportion to their demand from the current time until the queue vanishes. This share of the externality is caused by the departure rate shift under first in first out (FIFO) and the externality propagates to the downstream bottlenecks. However, the externalities propagates to the downstream are calculated out if downstream bottlenecks exist. Therefore, the authors concluded that the path DMT can be evaluated without considering the propagation of the externalities, but just as in the evaluation of the path DMT for a single path passing through a series of bottlenecks between the origin and destination. Based on the DMT analysis, the authors finally proposed a heuristic solution algorithm and verified it by comparing the numerical solution with the analytical one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lack of detailed and accurate safety records on incidents in Australian work zones prevents a thorough understanding of the relevant risks and hazards. Consequently it is difficult to select appropriate treatments for improving the safety of roadworkers and motorists alike. This paper presents a method for making informed decisions about safety treatments by 1) identifying safety issues and hazards in work zones, 2) understanding the attitudes and perceptions of both roadworkers and motorists, 3) reviewing the effectiveness of work zone safety treatments according to existing research, and 4) incorporating local expert opinion on the feasibility and usefulness of the safety treatments. Using data collected through semi-structured interviews with roadwork personnel and online surveys of Queensland drivers, critical safety issues were identified. The effectiveness of treatments for addressing the issues was understood through rigorous literature review and consultations with local road authorities. Promising work zone safety treatments include enforcement, portable rumble strips, perceptual measures to imply reduced lane width, automated or remotely-operated traffic lights, end of queue measures, and more visible and meaningful signage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immigration to Australia has long been the focus of negative political interest. In recent times, the proposal of exclusionary policies such as the Malaysia Deal in 2011 has fuelled further debate. In these debates, Federal politicians often describe asylum seekers and refugees as ‘illegal’, ‘queue jumpers’, and ‘boat people’. This article examines the political construction of asylum seekers and refugees during debates surrounding the Malaysia Deal in the Federal Parliament of Australia. Hansard parliamentary debates were analysed to identify the underlying themes and constructions that permeate political discourse about asylum seekers and refugees. We argue that asylum seekers arriving in Australia by boat were constructed as threatening to Australia’s national identity and border security, and were labelled as ‘illegitimate’. A dichotomous characterisation of legitimacy pervades the discourse about asylum seekers, with this group constructed either as legitimate humanitarian refugees or as illegitimate ‘boat arrivals’. Parliamentarians apply the label of legitimacy based on implicit criteria concerning the mode of arrival of asylum seekers, their respect for the so-called ‘queue’, and their ability to pay to travel to Australia. These constructions result in the misrepresentation of asylum seekers as illegitimate, undermining their right to protection under Australia’s laws and international obligations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stations on Bus Rapid Transit (BRT) lines ordinarily control line capacity because they act as bottlenecks. At stations with passing lanes, congestion may occur when buses maneuvering into and out of the platform stopping lane interfere with bus flow, or when a queue of buses forms upstream of the station blocking inflow. We contend that, as bus inflow to the station area approaches capacity, queuing will become excessive in a manner similar to operation of a minor movement on an unsignalized intersection. This analogy was used to treat BRT station operation and to analyze the relationship between station queuing and capacity. We conducted microscopic simulation to study and analyze operating characteristics of the station under near steady state conditions through output variables of capacity, degree of saturation and queuing. In the first of two stages, a mathematical model was developed for all stopping buses potential capacity with bus to bus interference and the model was validated. Secondly, a mathematical model was developed to estimate the relationship between average queue and degree of saturation and calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time.