988 resultados para Programmable logic technology
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Neste trabalho são apresentados os resultados de uma técnica que permitiu implementar a estratégia de controle de temperatura do aquecedor de óleo térmico da fabrica de Anodo Verde da Albrás Alumínio Brasileiro S/A. No projeto utilizou-se um sistema hierarquizado baseado em conjuntos e lógica Fuzzy. O uso dessa metodologia fez com que o sistema fosse capaz de reagir adequadamente diante das variações do ponto de operação do aquecedor, pois o controle Fuzzy exibe algumas características do aprendizado humano, sendo considerado um exemplo de inteligência artificial. O aquecedor de óleo térmico é fundamental no processo de fabricação de blocos inódicos, utilizados como pólo positivo no processo de eletrólise na obtenção do alumínio primário. O sistema de óleo térmico aquece os misturadores e pré-aquecedor de coque, mantendo a temperatura desses equipamentos dentro dos limites estabelecidos pela engenharia de processo. A variável temperatura impacta diretamente na energia de mistura da pasta e na qualidade do produto final, que é o bloco anódico. A metodologia apresentada permitiu alcançar um controle de temperatura que atendeu satisfatoriamente os parâmetros de processo. O programa foi desenvolvido em linguagem ladder é executado em controladores lógicos programáveis (CLP’S) da Rockwell Automation. O controle já está em plena operação nas fábricas de anodos e os resultados obtidos demonstram a eficácia e viabilidade do sistema, que futuramente estará sendo implementado no controle de outros equipamentos da Albrás.
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
This paper aims to show practical and effectiveexperiencesfor lessons Industrial Automation Laboratory taught inundergraduate degreein ElectricalEngineering from the University Júlio MesquitaFilho - UNESP, Guaratinguetá. Experiments carriedsimulatecontrol and drive systems of electric three phase induction motors (MIT)widely usedinindustries. The experiments simulate a manufacturing environment where there isa need to control the activation and continuous operation ofelectricmotors. Seven experimentsthat simulatethe firing of electrical motors through a controlsystem, a driver along with asimulator loads coupled to the electric motor was developed. Experiments usinga Programmable Logic Controller (PLC) as acontroller,an inverter frequencyasdriver, and MagneticBrake, as simulatorengine loads . The experiments were divided accordingto the speed reference signal used fordrivingand operating the electric motor: digital and analog. The first five experiments performing the drive control and operation of the electric motor via digital signals. The sixth and seventh experiments using an analog signal as a reference speed for the electric motor
Resumo:
This work aims to make the closed loop control of a three phase induction motor, through the integration of the following equipment: a frequency inverter, the actuator system; a programmable logic controller (PLC), the controller; an encoder, the velocity sensor, used as a feedback monitoring the control variable and the three-phase induction motor, the plant to be controlled. The control is performed using a Proportional - Integrative - Derivative (PID) approach. The PLC has a help instruction, which performs the auto adjustment of the controller, that instruction is used and confronted with other adjustment methods. There are several types of methods adjustments to the PID controllers, where the empirical methods are addressed in this work. The system is deployed at the Interface and Electro Electronic Control laboratory in the Universidade Estadual Paulista Júlio Mesquita Filho, Guaratinguetá, São Paulo, then, in the future, this work becomes an experiment to be conducted in the classroom, allowing undergraduate students to develop a greater affinity to the programs used by the PLC as well as studies of undergraduate and graduate works with the help of assembly made
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
This monograph presents the main objective of analyzing the redundancy protection systems of protection for redundancy and block of energies against accident in presses and rotating equipment. After understanding two specific goals, on this case, show the systems of protection against accidents in rotating equipments, presses and similar; and discuss the vulnerabilities of current systems of protection against accidents in presses and similar, we will propose a system of autonomous redundancy of Programmable Logic Controller (PLC) operating simultaneously taking online in the event of failure of one of the two. The methodology was worked through a revision of a variety of bibliography, and interpretation of national and international standards as well as access to research on systems, practices used in industrial and companies supplying products and of companies and energy blockages solutions
Resumo:
This monograph presents the main objective of analyzing the redundancy protection systems of protection for redundancy and block of energies against accident in presses and rotating equipment. After understanding two specific goals, on this case, show the systems of protection against accidents in rotating equipments, presses and similar; and discuss the vulnerabilities of current systems of protection against accidents in presses and similar, we will propose a system of autonomous redundancy of Programmable Logic Controller (PLC) operating simultaneously taking online in the event of failure of one of the two. The methodology was worked through a revision of a variety of bibliography, and interpretation of national and international standards as well as access to research on systems, practices used in industrial and companies supplying products and of companies and energy blockages solutions
Resumo:
This paper presents the new active absorption wave basin, named Hydrodynamic Calibrator (HC), constructed at the University of São Paulo (USP), in the Laboratory facilities of the Numerical Offshore Tank (TPN). The square (14 m 14 m) tank is able to generate and absorb waves from 0.5 Hz to 2.0 Hz, by means of 148 active hinged flap wave makers. An independent mechanical system drives each flap by means of a 1HP servo-motor and a ball-screw based transmission system. A customized ultrasonic wave probe is installed in each flap, and is responsible for measuring wave elevation in the flap. A complex automation architecture was implemented, with three Programmable Logic Computers (PLCs), and a low-level software is responsible for all the interlocks and maintenance functions of the tank. Furthermore, all the control algorithms for the generation and absorption are implemented using higher level software (MATLAB /Simulink block diagrams). These algorithms calculate the motions of the wave makers both to generate and absorb the required wave field by taking into account the layout of the flaps and the limits of wave generation. The experimental transfer function that relates the flap amplitude to the wave elevation amplitude is used for the calculation of the motion of each flap. This paper describes the main features of the tank, followed by a detailed presentation of the whole automation system. It includes the measuring devices, signal conditioning, PLC and network architecture, real-time and synchronizing software and motor control loop. Finally, a validation of the whole automation system is presented, by means of the experimental analysis of the transfer function of the waves generated and the calculation of all the delays introduced by the automation system.
Resumo:
Systems relying on fixed hardware components with a static level of parallelism can suffer from an underuse of logical resources, since they have to be designed for the worst-case scenario. This problem is especially important in video applications due to the emergence of new flexible standards, like Scalable Video Coding (SVC), which offer several levels of scalability. In this paper, Dynamic and Partial Reconfiguration (DPR) of modern FPGAs is used to achieve run-time variable parallelism, by using scalable architectures where the size can be adapted at run-time. Based on this proposal, a scalable Deblocking Filter core (DF), compliant with the H.264/AVC and SVC standards has been designed. This scalable DF allows run-time addition or removal of computational units working in parallel. Scalability is offered together with a scalable parallelization strategy at the macroblock (MB) level, such that when the size of the architecture changes, MB filtering order is modified accordingly
Resumo:
This paper proposes an automatic framework for the seamless integration of hardware accelerators, starting from an OpenMP-based application and an XML file describing the HW/SW partitioning. It extends a fully software architecture by generating and integrating the cores, along with the proper interfaces, and the code for scheduling and synchronization. Experimental results show that it is possible to validate different solutions only by varying the input code.