951 resultados para Previsão de insolvência
Resumo:
Esta dissertação apresenta um estudo sobre a aplicação de técnicas de previsão na arrecadação tributária. Buscou-se a aplicação das principais técnicas quantitativas de previsão a uma série temporal de arrecadação de ICMS – Imposto sobre operações relativas à circulação de mercadorias e sobre prestações de serviços de transporte interestadual, intermunicipal e de comunicação. Além disto, procurou-se estimular a discussão sobre a utilização de técnicas de previsão qualitativas como forma de melhorar a acurácia dos resultados obtidos com os modelos estatísticos de previsão. O método de trabalho proposto apresenta uma seqüência estruturada de passos para a realização da previsão de receitas tributárias. Baseado neste método de trabalho e no referencial teórico, realizou-se um estudo de caso a partir dos dados de arrecadação de ICMS no Estado do Paraná. Os modelos de previsão foram testados com séries de mais de 50 observações – consideradas mais adequadas para utilização da maioria dos modelos estatísticos – e com séries mais curtas, visando comparar o grau de acurácia de cada modelo.
Resumo:
Este trabalho compara procedimentos de previsão de preços de commodities, utilizados de maneira impírica pelos analistas de mercado, com os procedimentos fornecidos pela Análise de Séries Temporais. Aplicamos os métodos de previsão utilizando as Médias Móveis, os métodos baseados em Alisamentos exponenciais e principalmente os modelos ARIMA de Box-Jenkins. Estes últimos são, em geral, generalizações dos primeiros, com a vantagem de utilizar os instrumentos estatísticos de medidas das incertezas, como o desvio-padrão e os intervalos de confiança para as previsões
Resumo:
Trata da utilização da análise fundamental na previsão de preços da commodity soja no mercado futuro. Apresenta uma síntese da origem e desenvolvimento do mercado e da evolução da negociação com futuros. Descreve o mercado físico e futuro do complexo soja - grão, farelo e óleo -, e a formação dos preços mundiais e domésticos da soja e derivados. Analisa a formação e o comportamento dos preços e a viabilidade do uso da abordagem técnica e da fundamental na previsão de preços das commodities nos mercados futuros. Desenvolve um modelo econométrico para a soja, na forma de um sistema de equações que sintetize os segmentos mais imponantes desse mercado, utilizando a abordagem fundamental e apresenta uma avaliação dos resultados obtidos com a estimativa dos coeficientes das equações estruturais.
Resumo:
Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.
Resumo:
Sistematizar o estudo das técnicas de previsão relevantes para a análise do mercado de informática no Brasil agrupando-as em um modelo prático, e apresentar os resultados de sua aplicação ou seja o trabalho baseia-se na tendência atual de integração das técnicas disponíveis, em um sistema dinâmico de previsões na empresa
Resumo:
A identificação antecipada do comportamento da demanda de veículos novos na extremidade da rede de distribuição é imprescindível para implementação de um sistema de produção puxada pela demanda. Previsões confiáveis, obtidas nas concessionárias, conferem aos fabricantes maior sensibilidade diante das peculariedades locais da demanda e reduzem as incertezas da produção em larga escala. A obtenção de previsões consistentes requer, porém, o emprego de métodos formais. Os profissionais responsáveis pela elaboração de previsões nas concessionárias desconhecem, em grande parte, os métodos de forecasting abordados na literatura. Essa dissertação visa o desenvolvimento de um sistema formal para elaboração de previsões de demanda de veículos novos em concessionárias. Em estudo de caso, conduzido em uma concessionária da marca Volkswagen, modelos estatísticos de Box-Jenkins e de suavização exponencial são aplicados para gerar previsões quantitativas das vendas de veículos novos. Previsões qualitativas, correspondentes ao julgamento de especialistas no segmento, são formalizadas através do método Delphi. Finalmente, as previsões quantitativas e qualitativas são combinadas matematicamente e comparadas. Tal comparação demonstra que as vantagens inerentes a cada método podem ser absorvidas para proporcionar previsões mais acuradas.
Resumo:
Analisa-se as técnicas de previsão mais utilizadas pelos analistas técnicos, procurando verificar se existe base estatística que corrobore a elevada popularidade que estes métodos possuem nos mercados financeiros. A evidência estatística mostra que estes métodos funcionam durante determinados períodos de tempo, não existindo evidência de que o mesmo método funcione durante longos períodos de tempo.
Resumo:
O texto trata da questão da previsão do tráfego aéreo de passageiros. Caracteriza a importância do tema para o negócio das companhias aéreas. Aborda os aspectos mais importantes envolvidos, características específicas e revisa as metodologias utilizadas no âmbito da indústria de transporte aéreo. Ilustra a questão com a aplicação de um dos métodos para a solução de um problema real
Resumo:
Trata da nova metodologia de planejamento colaborativo, previsão e reabastecimento, conhecida pela sigla CPFR. Aborda as principais lacunas das metodologias tradicionais, as oportunidades de negócios geradas, o modelo de negócios proposto pelo CPF R e suas etapas de implementação, as implicações sobre a organização, os principais problemas de implementação, metodologias e ferramentas de integração presentes nas empresas que utilizam o CPFR. Aponta oportunidades geradas pelo CPFR e características de integração presentes nas empresas que já utilizam o conceito.
Resumo:
O presente documento procura analisar e desenvolver um modelo de previsão de demanda de crédito imobiliário residencial para o mercado brasileiro. Serão examinados: a relação do crédito e os fatores macroeconômicos, a evolução do crédito no Brasil, o crédito imobiliário no contexto do crédito brasileiro e o déficit habitacional no mercado. Em seguida identificaremos os indicadores macroeconômicos que melhor explicam a demanda de crédito imobiliário através de modelos estatísticos de regressão. Finalmente testaremos modelos e definiremos o que melhor se aplica à estimativa de previsão de demanda de crédito imobiliário para o mercado brasileiro.
Resumo:
O objetivo desse trabalho é avaliar a capacidade de previsão do mercado sobre a volatilidade futura a partir das informações obtidas nas opções de Petrobras e Vale, além de fazer uma comparação com modelos do tipo GARCH e EWMA. Estudos semelhantes foram realizados no mercado de ações americano: Seja com uma cesta de ações selecionadas ou com relação ao índice S&P 100, as conclusões foram diversas. Se Canina e Figlewski (1993) a “volatilidade implícita tem virtualmente nenhuma correlação com a volatilidade futura”, Christensen e Prabhala (1998) concluem que a volatilidade implícita é um bom preditor da volatilidade futura. No mercado brasileiro, Andrade e Tabak (2001) utilizam opções de dólar para estudar o conteúdo da informação no mercado de opções. Além disso, comparam o poder de previsão da volatilidade implícita com modelos de média móvel e do tipo GARCH. Os autores concluem que a volatilidade implícita é um estimador viesado da volatilidade futura mas de desempenho superior se comparada com modelos estatísticos. Gabe e Portugal (2003) comparam a volatilidade implícita das opções de Telemar (TNLP4) com modelos estatísticos do tipo GARCH. Nesse caso, volatilidade implícita tambem é um estimador viesado, mas os modelos estatísticos além de serem bons preditores, não apresentaram viés. Os dados desse trabalho foram obtidos ao longo de 2008 e início de 2009, optando-se por observações intradiárias das volatilidades implícitas das opções “no dinheiro” de Petrobrás e Vale dos dois primeiros vencimentos. A volatidade implícita observada no mercado para ambos os ativos contém informação relevante sobre a volatilidade futura, mas da mesma forma que em estudos anteriores, mostou-se viesada. No caso específico de Petrobrás, o modelo GARCH se mostrou um previsor eficiente da volatilidade futura
Resumo:
Uma das maiores dificuldades encontradas pelos técnicos envolvidos na elaboração da previsão do tempo é a falta de integração entre o software de visualização usado por eles e os programas usados para escrever os boletins. Os previsores necessitam de um meio rápido e fácil de gerar previsões com outras formas de apresentação, além do formato de texto em que ela normalmente é produzida. A partir do estudo dessas dificuldades, formulou-se a hipótese de que seria benéfico criar uma linguagem visual para a criação da previsão do tempo, que permitisse gerar tanto o texto de um boletim meteorológico quanto as imagens correspondentes. Este trabalho descreve a especificação dessa linguagem, à qual se deu o nome de Pythonissa. Ela foi definida usando o formalismo de grafos e se constitui de um modelo da estrutura de um boletim de previsão do tempo. Em Pythonissa, cada região geográfica para a qual é feita a previsão é representada por um vértice em um grafo. Os fenômenos presentes na região também são representados por vértices, de outros tipos, ligados à região por arestas que denotam sua presença. Cada tipo de vértice e aresta tem mapeamentos para representações gráficas e para elementos de controle em uma interface com o usuário. A partir da linguagem, foi implementado um protótipo preliminar, no qual é possível criar um boletim de por meio de uma interface visual e gerar o texto e a imagem correspondentes. Foi dado início, também, à construção de um framework para integração da linguagem a um ambiente de visualização de dados, de modo a produzir uma aplicação utilizável em um ambiente de trabalho real. Para isto foram usados o software de visualização Vis5D e a linguagem de scripts Python. A este framework, se deu o nome de Py5D.
Resumo:
Redes Bayesianas podem ser ferramentas poderosas para construção de modelos econômico-financeiros utilizados para auxílio à tomada de decisão em situações que envolvam grau elevado de incerteza. Relações não-lineares entre variáveis não são capturadas em modelos econométricos lineares. Especialmente em momentos de crise ou de ruptura, relações lineares, em geral, não mais representam boa aproximação da realidade, contribuindo para aumentar a distância entre os modelos teóricos de previsão e dados reais. Neste trabalho, é apresentada uma metodologia para levantamento de dados e aplicação de Redes Bayesianas na obtenção de modelos de crescimento de fluxos de caixa de empresas brasileiras. Os resultados são comparados a modelos econométricos de regressão múltipla e finalmente comparados aos dados reais observados no período. O trabalho é concluído avaliando-se as vantagens de desvantagens da utilização das Redes de Bayes para esta aplicação.
Resumo:
Resumo O objetivo deste trabalho é explorar a utilização de Redes Neurais no processo de previsão da Captação Líquida do Mercado de Previdência Privada Brasileiro como ferramenta à tomada de decisão e apoio na gestão das empresas do setor. Para a construção desse modelo foram utilizadas Redes Neurais, ferramenta que vem se mostrando adequada para utilização em modelos não lineares com resultados superiores a outras técnicas. A fonte de dados principal para a realização deste trabalho foi a FENAPREVI – Federação Nacional de Previdência Privada e Vida. Para comparação com o modelo de Redes Neurais, foi utilizado um modelo de Regressão Linear Múltipla como benchmark, com o objetivo de evidenciar a adequação da ferramenta em vista dos objetivos traçados no trabalho. O modelo foi construído a partir das informações mensais do setor, entre maio de 2002 e agosto de 2009, considerando o que se convencionou chamar de ‘mercado vivo’, que abrange os produtos PGBL e VGBL, comercializados ininterruptamente nesse período pelas chamadas EAPP – Entidades Abertas de Prividência Privada. Os resultados obtidos demonstraram a adequação da ferramenta Redes Neurais, que obtiveram resultados superiores aos obtidos utilizando Regressão Linear Múltipla.
Resumo:
No Brasil, o regime de metas para inflação foi instituído em julho de 1999, pelo Banco Central do Brasil, sendo o principal objetivo ancorar as expectativas de mercado. Este regime levou a uma queda da inflação e também a uma convergência das expectativas. Quando comparadas com a inflação ocorrida, as expectativas do mercado melhoraram nos últimos anos, porém, continuam com um erro ainda expressivo para o prazo de 6 meses. Em linhas gerais, a contribuição desta dissertação é de mostrar que existem modelos simples que conseguem prever o comportamento da inflação em médio prazo (6 meses). Um modelo ARIMA do IPCA obtém projeções acumuladas de inflação melhores que as projeções do mercado.