988 resultados para Photovoltaic applications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the photovoltaic generation has had greater insertion in the energy mix of the most developed countries, growing at annual rates of over 30%. The pressure for the reduction of pollutant emissions, diversification of the energy mix and the drop in prices are the main factors driving this growth. Grid tied systems plays an important role in alleviating the energy crisis and diversification of energy sources. Among the grid tied systems, building integrated photovoltaic systems suffers from partial shading of the photovoltaic modules and consequently the energy yield is reduced. In such cases, classical forms of modules connection do not produce good results and new techniques have been developed to increase the amount of energy produced by a set of modules. In the parallel connection technique of photovoltaic modules, a high voltage gain DC-DC converter is required, which is relatively complex to build with high efficiency. The current-fed isolated converters explored in this work have some desirable characteristics for this type of application, such as: low input current ripple and input voltage ripple, high voltage gain, galvanic isolation, feature high power capacity and it achieve soft switching in a wide operating range. This study presents contributions to the study of a high gain and high efficiency DC-DC converter for use in a parallel system of photovoltaic generation, being possible the use in a microinverter or with central inverter. The main contributions of this work are: analysis of the active clamping circuit operation proposing that the clamp capacitor connection must be done on the negative node of the power supply to reduce the input current ripple and thus reduce the filter requirements; use of a voltage doubler in the output rectifier to reduce the number of components and to extend the gain of the converter; detailed study of the converter components in order to raise the efficiency; obtaining the AC equivalent model and control system design. As a result, a DC-DC converter with high gain, high efficiency and without electrolytic capacitors in the power stage was developed. In the final part of this work the DC-DC converter operation connected to an inverter is presented. Besides, the DC bus controller is designed and are implemented two maximum power point tracking algorithms. Experimental results of full system operation connected to an emulator and subsequently to a real photovoltaic module are also given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presenting a complete guide for the planning, design and implementation of solar PV systems for off-grid applications, this book features analysis based on the authors’ own laboratory testing as well as their in the field experiences. Incorporating the latest developments in smart-digital and control technologies into the design criteria of the PV system, this book will also focus on how to integrate newer smart design approaches and techniques for improving the efficiency, reliability and flexibility of the entire system. The design and implementation of India’s first-of its-kind Smart Mini-Grid system (SMG) at TERI premises, which involves the integration of multiple renewable energy resources (including solar PV) through smart controllers for managing the load intelligently and effectively is presented as a key case study. Maximizing reader insights into the performance of different components of solar PV systems under different operating conditions, the book will be of interest to graduate students, researchers, PV designers, planners, and practitioners working in the area of solar PV design, implementation and assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Innovation studies have been interest of not only the scholars from various fields such as economics, management and sociology but also industrial practitioners and policy makers. In this vast and fruitful field, the theory of diffusion of innovations, which has been driven by a sociological approach, has played a vital role in our understanding of the mechanisms behind industrial change. In this paper, our aim is to give a state of art review of diffusion of innovation models in a structural and conceptual way with special reference to photovoltaic. We argue firstly, as an underlying background, how diffusion of innovations theory differs from other innovation studies. Secondly we give a brief taxonomical review of modelling methodologies together with comparative discussions. And finally we put the wealth of modelling in the context of photovoltaic diffusion and suggest some future directions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, interest in light-emitting diode (LED) lighting has been growing because of its high efficacy, lifetime and ruggedness. This paper proposes a better adaptation of LED lamps to the technical requirements of photovoltaic lighting domestic systems, whose main quality criteria are reliability and that behave as voltage power supplies. As the key element of reliability in LED lamps is temperature, a solution is proposed for driving LED lamps using voltage sources, such as photovoltaic system batteries, with a control architecture based on pulse width modulation signal that regulates the current applied according to the LED lamp temperature. A prototype of the LED lamp has been implemented and tested to show its good performance at different temperatures and at different battery voltages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, a novel method to trap and pattern ensembles of nanoparticles has been proposed and tested. It relies on the photovoltaic (PV) properties of certain ferroelectric crystals such as LiNbO3 [1,2]. These crystals, when suitably doped, develop very high electric fields in response to illumination with light of suitable wavelength. The PV effect lies in the asymmetrical excitation of electrons giving rise to PV currents and associated space-charge fields (photorefractive effect). The field generated in the bulk of the sample propagates to the surrounding medium as evanescent fields. When dielectric or metal nanoparticles are deposited on the surface of the sample the evanescent fields give rise to either electrophoretic or dielectrophoretic forces, depending on the charge state of the particles, that induce the trapping and patterning effects [3,4]. The purpose of this work has been to explore the effects of such PV fields in the biology and biomedical areas. A first work was able to show the necrotic effects induced by such fields on He-La tumour cells grown on the surface of an illuminated iron-doped LiNbO3 crystal [5]. In principle, it is conceived that LiNbO3 nanoparticles may be advantageously used for such biomedical purposes considering the possibility of such nanoparticles being incorporated into the cells. Previous experiments using microparticles have been performed [5] with similar results to those achieved with the substrate. Therefore, the purpose of this work has been to fabricate and characterize the LiNbO3 nanoparticles and assess their necrotic effects when they are incorporated on a culture of tumour cells. Two different preparation methods have been used: 1) mechanical grinding from crystals, and 2) bottom-up sol-gel chemical synthesis from metal-ethoxide precursors. This later method leads to a more uniform size distribution of smaller particles (down to around 50 nm). Fig. 1(a) and 1(b) shows SEM images of the nanoparticles obtained with both method. An ad hoc software taking into account the physical properties of the crystal, particullarly donor and aceptor concentrations has been developped in order to estimate the electric field generated in noparticles. In a first stage simulations of the electric current of nanoparticles, in a conductive media, due to the PV effect have been carried out by MonteCarlo simulations using the Kutharev 1-centre transport model equations [6] . Special attention has been paid to the dependence on particle size and [Fe2+]/[Fe3+]. First results on cubic particles shows large dispersion for small sizes due to the random number of donors and its effective concentration (Fig 2). The necrotic (toxicity) effect of nanoparticles incorporated into a tumour cell culture subjected to 30 min. illumination with a blue LED is shown in Fig.3. For each type of nanoparticle the percent of cell survival in dark and illumination conditions has been plot as a function of the particle dilution factor. Fig. 1a corresponds to mechanical grinding particles whereas 1b and 1c refer to chemically synthesized particles with two oxidation states. The light effect is larger with mechanical grinding nanoparticles, but dark toxicity is also higher. For chemically synthesized nanoparticles dark toxicity is low but only in oxidized samples, where the PV effect is known to be larger, the light effect is appreciable. These preliminary results demonstrate that Fe:LiNbO· nanoparticles have a biological damaging effect on cells, although there are many points that should be clarified and much space for PV nanoparticles optimization. In particular, it appears necessary to determine the fraction of nanoparticles that become incorporated into the cells and the possible existence of threshold size effects. This work has been supported by MINECO under grant MAT2011-28379-C03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a comprehensive study of the synthesis of nanomaterials. It explores the synthetic methods on the control of the size, shape and phase of semiconductor nanocrystals. A number of important conclusions, including the mechanism behind crystal growth and the structure-relationship, have been drawn through the experimental and theoretical investigation. The synthesized nanocrystals have been tested for applications in gas sensing, photocatalysis and solar cells, which exhibit considerable commercialization potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.