977 resultados para Partial differential equation
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
We study the effects of external noise in a one-dimensional model of front propagation. Noise is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic partial differential equation. Analytical and numerical results for the front shape and velocity are presented. The linear-marginal-stability theory is found to increase its range of validity in the presence of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic equation.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
We study the effects of external noise in a one-dimensional model of front propagation. Noise is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic partial differential equation. Analytical and numerical results for the front shape and velocity are presented. The linear-marginal-stability theory is found to increase its range of validity in the presence of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic equation.
Resumo:
A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.
Resumo:
Ce travail présente une technique de simulation de feux de forêt qui utilise la méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques de la méthode Level-set sont présentées. On explique ensuite une méthode de réinitialisation permettant de traiter de manière robuste des données réelles et de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles dans le domaine de propagation du feu. Finalement, la question de la recherche du point d’ignition d’un incendie est abordée.
Resumo:
Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.
Resumo:
Cette thèse est divisée en deux grands chapitres, dont le premier porte sur des problèmes de commande optimale en dimension un et le deuxième sur des problèmes en dimension deux ou plus. Notons bien que, dans cette thèse, nous avons supposé que le facteur temps n'intervient pas. Dans le premier chapitre, nous calculons, au début, l'équation de programmation dynamique pour la valeur minimale F de l'espérance mathématique de la fonction de coût considérée. Ensuite, nous utilisons le théorème de Whittle qui est applicable seulement si une condition entre le bruit blanc v et les termes b et q associés à la commande est satisfaite. Sinon, nous procédons autrement. En effet, un changement de variable transforme notre équation en une équation de Riccati en G= F', mais sans conditions initiales. Dans certains cas, à partir de la symétrie des paramètres infinitésimaux et de q, nous pouvons en déduire le point x' où G(x')=0. Si ce n'est pas le cas, nous nous limitons à des bonnes approximations. Cette même démarche est toujours possible si nous sommes dans des situations particulières, par exemple, lorsque nous avons une seule barrière. Dans le deuxième chapitre, nous traitons les problèmes en dimension deux ou plus. Puisque la condition de Whittle est difficile à satisfaire dans ce cas, nous essayons de généraliser les résultats du premier chapitre. Nous utilisons alors dans quelques exemples la méthode des similitudes, qui permet de transformer le problème en dimension un. Ensuite, nous proposons une nouvelle méthode de résolution. Cette dernière linéarise l'équation de programmation dynamique qui est une équation aux dérivées partielles non linéaire. Il reste à la fin à trouver les conditions initiales pour la nouvelle fonction et aussi à vérifier que les n expressions obtenues pour F sont équivalentes.
Resumo:
Cette thèse est divisée en trois chapitres. Le premier explique comment utiliser la méthode «level-set» de manière rigoureuse pour faire la simulation de feux de forêt en utilisant comme modèle physique pour la propagation le modèle de l'ellipse de Richards. Le second présente un nouveau schéma semi-implicite avec une preuve de convergence pour la solution d'une équation de type Hamilton-Jacobi anisotrope. L'avantage principal de cette méthode est qu'elle permet de réutiliser des solutions à des problèmes «proches» pour accélérer le calcul. Une autre application de ce schéma est l'homogénéisation. Le troisième chapitre montre comment utiliser les méthodes numériques des deux premiers chapitres pour étudier l'influence de variations à petites échelles dans la vitesse du vent sur la propagation d'un feu de forêt à l'aide de la théorie de l'homogénéisation.