Problèmes de commande optimale stochastique généralisés


Autoria(s): Zitouni, Foued
Contribuinte(s)

Lefebvre, Mario M.

Data(s)

25/05/2015

31/12/1969

25/05/2015

30/04/2015

01/11/2014

Resumo

Cette thèse est divisée en deux grands chapitres, dont le premier porte sur des problèmes de commande optimale en dimension un et le deuxième sur des problèmes en dimension deux ou plus. Notons bien que, dans cette thèse, nous avons supposé que le facteur temps n'intervient pas. Dans le premier chapitre, nous calculons, au début, l'équation de programmation dynamique pour la valeur minimale F de l'espérance mathématique de la fonction de coût considérée. Ensuite, nous utilisons le théorème de Whittle qui est applicable seulement si une condition entre le bruit blanc v et les termes b et q associés à la commande est satisfaite. Sinon, nous procédons autrement. En effet, un changement de variable transforme notre équation en une équation de Riccati en G= F', mais sans conditions initiales. Dans certains cas, à partir de la symétrie des paramètres infinitésimaux et de q, nous pouvons en déduire le point x' où G(x')=0. Si ce n'est pas le cas, nous nous limitons à des bonnes approximations. Cette même démarche est toujours possible si nous sommes dans des situations particulières, par exemple, lorsque nous avons une seule barrière. Dans le deuxième chapitre, nous traitons les problèmes en dimension deux ou plus. Puisque la condition de Whittle est difficile à satisfaire dans ce cas, nous essayons de généraliser les résultats du premier chapitre. Nous utilisons alors dans quelques exemples la méthode des similitudes, qui permet de transformer le problème en dimension un. Ensuite, nous proposons une nouvelle méthode de résolution. Cette dernière linéarise l'équation de programmation dynamique qui est une équation aux dérivées partielles non linéaire. Il reste à la fin à trouver les conditions initiales pour la nouvelle fonction et aussi à vérifier que les n expressions obtenues pour F sont équivalentes.

This thesis is divided into two chapters: the first one deals with some optimal control problems in one dimension and the second one with these problems in two or more dimensions. Note that, in this thesis, the time variable is not taken into account. In Chapter 1, at first we compute the dynamic programming equation for the minimal expected value F of the cost function considered. Next, we apply Whittle's theorem if the condition between the noise v and the functions b and q associated with the control variable is satisfied. Otherwise, we proceed differently. Indeed, if we make a change of variable, we obtain a Riccati equation for G= F', but without initial conditions. In some cases, from the symmetry of the infinitesimal parameters and of the function q, we can deduce the point x' where G(x')=0. If this is not possible, we limit ourselves to good approximations. The same approach is still possible if we are in specific situations, for example, when we have only one barrier. In Chapter 2, we discuss problems in dimension two or more. Since the condition in Whittle's theorem is difficult to satisfy in this case, we try to generalize the results obtained in Chapter 1. We then use in some examples the method of similarity solutions, which enables us to transform the problem into a one-dimensional one. Next, we propose a new resolution method. This method linearises the dynamic programming equation, which is a non-linear partial differential equation. Finally, we must find initial conditions for the new function, and also verify that the n expressions for F are equivalent.

Identificador

http://hdl.handle.net/1866/12002

Idioma(s)

fr

Palavras-Chave #Équation de programmation dynamique #Paramètres infinitésimaux #Théorème de Whittle #Commande optimale #Fonction de coût #Solution approximative #Temps minimal #Linéarisation #Dynamic programming equation #Infinitesimal parameters #Whittle's theorem #Optimal control #Cost function #Approximate solution #Minimum time #Mathematics / Mathématiques (UMI : 0405)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation