878 resultados para POSTURAL BALANCE
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on these two activities. For example, while the distribution of blood alcohol content (BAC) levels among fatally injured male drivers compared to riders is similar, a greater proportion of motorcycle fatalities involve levels in the lower (0 to .10% BAC) range. Several psychomotor and higher-order cognitive skills underpinning riding performance appear to be significantly influenced by low levels of alcohol. For example, at low levels (.02 to .046% BAC), riders show significant increases in reaction time to hazardous stimuli, inattention to the riding task, performance errors such as leaving the roadway and a reduced ability to complete a timed course. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills to more physical skills such as maintaining balance. As part of a research program to investigate the potential benefits of introducing a zero, or reduced, BAC for all riders in Queensland regardless of their licence status, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of ten experienced riders was measured while they performed either no secondary task, a visual search task, or a cognitive (arithmetic) task following the administration of alcohol (0; 0.02, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner; however, objective measures of static balance were negatively affected only at the .05% BAC dose. Performance on a concurrent secondary visual search task, but not a purely cognitive (arithmetic) task, improved postural stability across all BAC levels. Finally, the .05% BAC dose was associated with impaired performance on the cognitive (arithmetic) task, but not the visual search task, when participants were balancing, but neither task was impaired by alcohol when participants were standing on the floor. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.
Resumo:
Background. To establish whether sensorimotor function and balance are associated with on-road driving performance in older adults. Methods. The performance of 270 community-living adults aged 70–88 years recruited via the electoral roll was measured on a battery of peripheral sensation, strength, flexibility, reaction time, and balance tests and on a standardized measure of on-road driving performance. Results. Forty-seven participants (17.4%) were classified as unsafe based on their driving assessment. Unsafe driving was associated with reduced peripheral sensation, lower limb weakness, reduced neck range of motion, slow reaction time, and poor balance in univariate analyses. Multivariate logistic regression analysis identified poor vibration sensitivity, reduced quadriceps strength, and increased sway on a foam surface with eyes closed as significant and independent risk factors for unsafe driving. These variables classified participants into safe and unsafe drivers with a sensitivity of 74% and specificity of 70%. Conclusions. A number of sensorimotor and balance measures were associated with driver safety and the multivariate model comprising measures of sensation, strength, and balance was highly predictive of unsafe driving in this sample. These findings highlight important determinants of driver safety and may assist in developing efficacious driver safety strategies for older drivers.
Resumo:
Background: a fall occurs when an individual experiences a loss of balance from which they are unable to recover. Assessment of balance recovery ability in older adults may therefore help to identify individuals at risk of falls. The purpose of this 12-month prospective study was to assess whether the ability to recover from a forward loss of balance with a single step across a range of lean magnitudes was predictive of falls. Methods: two hundred and one community-dwelling older adults, aged 65–90 years, underwent baseline testing of sensorimotor function and balance recovery ability followed by 12-month prospective falls evaluation. Balance recovery ability was defined by whether participants required either single or multiple steps to recover from forward loss of balance from three lean magnitudes, as well as the maximum lean magnitude participants could recover from with a single step. Results: forty-four (22%) participants experienced one or more falls during the follow-up period. Maximal recoverable lean magnitude and use of multiple steps to recover at the 15% body weight (BW) and 25%BW lean magnitudes significantly predicted a future fall (odds ratios 1.08–1.26). The Physiological Profile Assessment, an established tool that assesses variety of sensori-motor aspects of falls risk, was also predictive of falls (Odds ratios 1.22 and 1.27, respectively), whereas age, sex, postural sway and timed up and go were not predictive. Conclusion: reactive stepping behaviour in response to forward loss of balance and physiological profile assessment are independent predictors of a future fall in community-dwelling older adults. Exercise interventions designed to improve reactive stepping behaviour may protect against future falls.
Resumo:
The specific aspects of cognition contributing to balance and gait have not been clarified in people with Parkinson’s disease (PD). Twenty PD participants and twenty age- and gender-matched healthy controls were assessed on cognition and clinical mobility tests. General cognition was assessed with the Mini Mental State Exam and the Addenbrooke’s Cognitive Exam. Executive function was evaluated using the Trail Making Tests (TMT-A and TMT-B) and a computerized cognitive battery which included a series of choice reaction time (CRT) tests. Clinical gait and balance measures included the Tinetti, Timed Up & Go, Berg Balance and Functional Reach tests. PD participants performed significantly worse than the controls on the tests of cognitive and executive function, balance and gait. PD participants took longer on Trail Making Tests, CRT-Location and CRT-Colour (inhibition response). Furthermore, executive function, particularly longer times on CRT-Distracter and greater errors on the TMT-B were associated with worse balance and gait performance in the PD group. Measures of general cognition were not associated with balance and gait measures in either group. For PD participants, attention and executive function were impaired. Components of executive function, particularly those involving inhibition response and distracters, were associated with poorer balance and gait performance in PD.
Resumo:
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.
Resumo:
Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.
Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.
Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.
Resumo:
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the cerebral cortex. Support for this cortical role comes from direct measurement associated with moments of induced instability as well as indirect links between cognitive task performance and balance recovery. The cerebral cortex appears to be directly involved in the control of rapid balance reactions but also setting the central nervous system in advance to optimize balance recovery reactions even when a future threat to stability is unexpected. In this review the growing body of evidence that now firmly supports a cortical role in the postural responses to externally induced perturbations is presented. Moreover, an updated framework is advanced to help understand how cortical contributions may influence our resistance to falls and on what timescale. The implications for future studies into the neural control of balance are discussed.
Resumo:
The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.
Resumo:
It is well established that postural threat modifies postural control, although little is known regarding the underlying mechanism(s) responsible. It is possible that changes in postural control under conditions of elevated postural threat result from alterations in cognitive strategies. The purpose of this study was to determine the influence of elevated postural threat on cognitive strategies and to determine the relationship between postural control, psychological, and cognitive measures. It was hypothesized that elevated postural threat would cause a shift to more conscious control of posture. It was also expected that a relationship between fear of falling and postural control would exist that could be explained by changes in conscious control of posture. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2m above ground level (HIGH). Center of pressure (COP) summary measures calculated to quantify postural control were the mean position (AP-COP MP), root mean square (AP-COP RMS) and mean power frequency (AP-COP MPF) in the anteriorposterior direction. Trunk sway measures calculated in the pitch direction were trunk angle and trunk velocity. Psychological measures including perceived balance confidence, perceived fear of falling, perceived anxiety, and perceived stability were self reported. As a physiological indicator of anxiety, electrodermal activity was collected. The cognitive strategies assessed were movement reinvestment and attention focus. A modified state-sp-ecific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). An attention focus questionnaire was developed to assess the amount of attention directed to internal and external sources. An effect of postural threat on cognitive strategies was observed as participants reported more conscious control and a greater concern or worry about their posture at the HIGH postural threat condition as well as an increased internal and external focus of attention. In addition changes in postural control, psychological, and physiological measures were found. The participants leaned away from the edge of the platform, the frequency of their postural adjustments increased, and the velocity of their trunk movements increased. Participants felt less confident, more fearful, more anxious, and less stable with an accompanying increase in physiological anxiety. Significant correlations between perceived anxiety, AP-COP MP, and cognitive measures revealed a possible relationship that could be mediated by cognitive measures. It was found that with greater conscious motor processing, more movement self-consciousness, and a greater amount of attention focused externally there was a larger shift of the mean position away from the edge of the platform. This thesis provides evidence that postural threat can influence cognitive strategies causing a shift to more conscious control of movement which is associated with leaning away from the edge of the platform. Shifting the position of the body away from the direction of the postural threat may reflect a cognitive strategy to ensure safety in this situation due to the inability to employ a stepping strategy when standing on an elevated platform.
Resumo:
This thesis explored whether individual characteristics could predict changes in postural control in young adults under conditions of height-induced postural threat. Eighty-two young adults completed questionnaires to assess trait anxiety, trait movement reinvestment, physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under conditions of low and high postural threat manipulated through changes in surface height. Individual characteristics were able to significantly predict changes in static, but not anticipatory postural control. Trait movement reinvestment and physical risk-taking were the most influential predictors. Evidence was provided that changes in fear and physiological arousal mediated the relationship between physical risk-taking and changes in static postural control. These results suggest that individual characteristics shape the postural strategy employed under threatening conditions and may be important for clinicians to consider during balance assessment and treatment protocols.
Resumo:
L'être humain utilise trois systèmes sensoriels distincts pour réguler le maintien de la station debout: la somesthésie, le système vestibulaire, et le système visuel. Le rôle de la vision dans la régulation posturale demeure peu connu, notamment sa variabilité en fonction de l'âge, du type développemental, et des atteintes neurologiques. Dans notre travail, la régulation posturale induite visuellement a été évaluée chez des participants au développement et vieillissement normaux âgés de 5-85 ans, chez des individus autistes (développement atypique) âgés de 12-33 ans, ainsi que chez des enfants entre 9-18 ans ayant subi un TCC léger. À cet effet, la réactivité posturale des participants en réponse à un tunnel virtuel entièrement immersif, se mouvant à trois niveaux de vélocité, a été mesurée; des conditions contrôles, où le tunnel était statique ou absent, ont été incluses. Les résultats montrent que la réactivité (i.e. instabilité) posturale induite visuellement est plus élevée chez les jeunes enfants; ensuite, elle s'atténue pour rejoindre des valeurs adultes vers 16-19 ans et augmente de façon linéaire en fonction de l'âge après 45 ans jusqu'à redevenir élevée vers 60 ans. De plus, à la plus haute vélocité du tunnel, les plus jeunes participants autistes ont manifesté significativement moins de réactivité posturale comparativement à leurs contrôles; cette différence n'était pas présente chez des participants plus âgés (16-33 ans). Enfin, les enfants ayant subi un TCC léger, et qui étaient initialement modérément symptomatiques, ont montré un niveau plus élevé d'instabilité posturale induite visuellement que les contrôles, et ce jusqu'à 12 semaines post-trauma malgré le fait que la majorité d'entre eux (89%) n'étaient plus symptomatiques à ce stade. En somme, cela suggère la présence d'une importante période de transition dans la maturation des systèmes sous-tendant l'intégration sensorimotrice impliquée dans le contrôle postural vers l'âge de 16 ans, et d'autres changements sensorimoteurs vers l'âge de 60 ans; cette sur-dépendance visuelle pour la régulation posturale chez les enfants et les aînés pourrait guider l'aménagement d'espaces et l'élaboration d'activités ajustés à l'âge des individus. De plus, le fait que l'hypo-réactivité posturale aux informations visuelles chez les autistes dépende des caractéristiques de l'environnement visuel et de l'âge chronologique, affine notre compréhension des anomalies sensorielles propres à l'autisme. Par ailleurs, le fait que les enfants ayant subi un TCC léger montrent des anomalies posturales jusqu'à 3 mois post-trauma, malgré une diminution significative des symptômes rapportés, pourrait être relié à une altération du traitement de l'information visuelle dynamique et pourrait avoir des implications quant à la gestion clinique des patients aux prises avec un TCC léger, puisque la résolution des symptômes est actuellement le principal critère utilisé pour la prise de décision quant au retour aux activités. Enfin, les résultats obtenus chez une population à développement atypique (autisme) et une population avec atteinte neurologique dite transitoire (TCC léger), contribuent non seulement à une meilleure compréhension des mécanismes d'intégration sensorimotrice sous-tendant le contrôle postural mais pourraient aussi servir comme marqueurs sensibles et spécifiques de dysfonction chez ces populations. Mots-clés : posture, équilibre, vision, développement/vieillissement sensorimoteur, autisme, TCC léger symptomatique, réalité virtuelle.
Resumo:
À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter.