906 resultados para PHB (poly-3-hydroxybu-tyrate)
Resumo:
The FeCl3-doped three poly(3-alkylthiophenes) (P3ATs) in solid state, i.e. poly( 3-octylthiophenl) (P3OT), poly(3-dodecylthiophene) (P3ODT) and poly( 3-octadecylthiophene) (P3ODT), were investigated in this paper. In X-ray diffraction results, there are obvious variations of the interlayer and interlayer spacings in the layered structures of P3ATs. In addition, it is found that some orientations of the side-chain groups occur after the doping process. The infrared spectra have also shown the microstructural changes arising from the readjustments of the polymer chains due to the intervention of the dopant. The presence of dopant leads to the formation of bipolarons and polarons at the same time. The conductivity measurements reveal that the conductivity decreases with the increase of the length of sidechain group. We have also observed the relaxation behaviors in the conductivities of the doped polymers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In order to investigate the influence of different alkyl side chain substitution on the structures and properties of P3ATs, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravity analysis (TGA), Fourier transform infrared spectra (FTIR) and ultraviolet-visible spectra (W-VIS) were applied to characterizing the samples of ploy(3-octylthiophene) (P3OT), poly(3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT). It is found that the different length of alkyl group substitution leads to great difference in molecular chain packings, according to the room temperature X-ray diffraction results. The temperature dependence of X-ray diffraction experiments were also performed to study the melting processes of P3ATs. With the increase in the number of carbon atoms in alkyl side chains, the melting point decreases, and the thermal stability decreases too. The results of both FTIR and W-VIS spectra indicate that the conjugation length of P3DDT is the longest. among the three P3ATs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
According to the data obtained from Differential Scanning Calorimetry (DSC),the method of Jeziorny, BOPOXOBCKHH and a new approach proposed by our laboratry are applied to study the nonisothermal crystallization behavior of poly( 3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT),and Kissinger method is used to get the value of the crystallization activation energy. The effect of the different alkyl substitution on crystallization is also investigated. In comparison to the methods of Jeziorny and BOPOXOBCKHH in which it can be found that the deviation from the line occurs in the later stage of crystallization, the new approach appears applicable due to the better linear relation. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.78kJ/mol and 246.93kJ/mol, respectivley, which implies that it is easiser to crystallize P3DDT than P3ODT.
Resumo:
The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.
Resumo:
The multilayer Langmuir-Blodgett (LB) films of pr,ly 3-(2-(5-chlorobenzotriazole)ethyl) thiophene (PCBET) blended with amphibious arachidic acid (AA) were prepared and characterized. The photoluminescence intensity of the blend film was enhanced as the AA increased by a certain amount. The PCBET excimers were not formed in the blend LB films.
Resumo:
Small amplitude potential step experiments were carried out to study the counterion transfer process in oxidized poly(3-methylthiophene) (PMT) film. The results demonstrate that anion transfer process in PMT film is migration rather than diffusion. A porous metal electrode model-single hole model, which takes into account both the ionic resistance of the film and the uncompensated solution resistance, was found suitable to describe the potential step experiments. According to this model, the ionic resistivity of oxidized PMT film was calculated to be 5.0 x 10(4) OMEGA.cm, and, in turn, the diffusion coefficent of ClO4- ion in PMT film 3.7 x 10(-9) cm2/s.
Resumo:
Blends of poly[3,3-bis(chloromethyl)oxetane] (Penton) with poly(vinyl acetate) were prepared. Compatibility, morphology, thermal behavior, and mechanical properties of blends with various compositions were studied using differential scanning calorimetry (DSC), dynamic mechanical measurements (DMA), tensile tests, and scanning electron microscopy (SEM). DMA study showed that the blends have two glass transition temperatures (T(g)). The T(g) of the PVAc rich phase shifts significantly to lower temperatures with increasing Penton content, suggesting that a considerable amount of Penton dissolves in the PVAc rich phase, but that the Penton rich phase contains little PVAc. The Penton/PVAc blends are partially compatible. DSC results suggest that PVAc can act as a beta-nucleator for Penton in the blend. Marked negative deviations from simple additivity were observed for the tensile strength at break over the entire composition range. The Young's modulus curve appeared to be S-shaped, implying that the blends are heterogeneous and have a two-phase structure. This was confirmed by SEM observations.
Resumo:
The C=C stretching Raman shifts and photoluminescence (PL) for poly(3-methylthiophene) (P3MT) are measured at various doping levels by in situ electrochemical Raman and PL spectroscopic techniques. It is found that the doping for P3MT induces the nonlinear excitations (soliton, Polaron, bipolaron), but also affects the polymer-chain structure, including the conjugated length and the interchain distance.
Resumo:
In situ monitoring of conductivity and potential response of conductive polymers during electrochemical process had been described. A renewable carbon fibre array ring-glassy carbon disk electrode was used for this purpose. Poly(3-methylthiophene) and polythiophene were investigated with this method, and some 5 orders in magnitude of conductivity changes were observed during the electrochemical redox process.
Resumo:
The Electrochemical stability of poly(3-methylthiophene) (PMT) thin film modified glassy carbon electrodes was investigated experimentally with successive cyclic voltammetry(CV) The effects of electrolyte solutions on the stability were studied. In the presence of small hydrated anions (less-than-or-equal-to 3.5nm) in the solution, the electroactivity of PMT films decreased with the characteristics of second order kinetics. In a solution with large hydrated anions (greater-than-or-equal-to 4 nm), PMT films have good stability. PMT/GO electrode can electrocatalyse the oxidation of Br- and Cl- anions, and loses its electroactivity rapidly. X-ray photoelectron spectra (XPS) have demonstrated that chlorine has bonded covalently onto the PMT structure after OV cycles in NaCl solutions.
Resumo:
Poly(3-hydroxybutyrate), P(3HB), produced from Bacillus cereus SPV using a simple glucose feeding strategy was used to fabricate P(3HB) microspheres using a solid-in-oil-water (s/o/w) technique. For this study, several parameters such as polymer concentration, surfactant and stirring rates were varied in order to determine their effect on microsphere characteristics. The average size of the microspheres was in the range of 2 μm to 1.54 μm with specific surface areas varying between 9.60 m(2)/g and 6.05 m(2)/g. Low stirring speed of 300 rpm produced slightly larger microspheres when compared to the smaller microspheres produced when the stirring velocity was increased to 800 rpm. The surface morphology of the microspheres after solvent evaporation appeared smooth when observed under SEM. Gentamicin was encapsulated within these P(3HB) microspheres and the release kinetics from the microspheres exhibiting the highest encapsulation efficiency, which was 48%, was investigated. The in vitro release of gentamicin was bimodal, an initial burst release was observed followed by a diffusion mediated sustained release. Biodegradable P(3HB) microspheres developed in this research has shown high potential to be used in various biomedical applications.
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).
Resumo:
Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.
Resumo:
The objective of the present work was to evaluate the relevance of the 2-methylcitric acid cycle (2MCC) to the catabolism of propionate in Burkholderia sacchari. Two B. sacchari mutants unable to grow on propionate were obtained: one disrupted in acnM, and the other in acnM and prpC deleted. An operative 2MCC significantly reduces the bacterial ability to incorporate 3-hydroxyvalerate (3HV) into a biodegradable copolyester accumulated from carbohydrates plus propionate. The efficiency of the mutants in converting propionate to 3HV units (Y(3HV/prp)) increased from 0.09 g.g(-1) to 0.81-0.96 g.g(-1), indicating that acnM and prpC are both essential for growth on propionate. None of the mutations resulted in achievement of the maximum theoretical Y(3HV/prp) (1.35 g.g(-1)). When increasing concentrations of propionate were supplied, decreasing values of Y(3HV/prp) were observed. The results obtained corroborate the hypothesis of the presence of other propionate catabolic pathways in B. sacchari. The 2MCC would be the more operative pathway, but a second pathway, which remains to be elucidated, would assume more importance under propionate concentrations of 1 g.L(-1) or higher. The efficiency in converting propionate to 3HV units can be improved by decreasing the propionate concentrations, owing to the role of the 2MCC.