305 resultados para Oxidised mannan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to identify some of the genes of the catabolic route of L-rhamnose in the yeast Pichia stipitis. There are at least two distinctly different pathways for L-rhamnose catabolism. The one described in bacteria has phosphorylated intermediates and the enzymes and the genes of this route have been described. The pathway described in yeast does not have phosphorylated intermediates. The intermediates and the enzymes of this pathway are known but none of the genes have been identified. The work was started by purifying the L-rhamnose dehydrogenase, which oxidates L-rhamnose to rhamnonic acid-gamma-lactone. NAD is used as a cofactor in this reaction. A DEAE ion exchange column was used for purification. The active fraction was further purified using a non-denaturing PAGE and the active protein identified by zymogram staining. In the last step the protein was separated in a SDS-PAGE, the protein band trypsinated and analysed by MALDI-TOF MS. This resulted in the identification of the corresponding gene, RHA1, which was then, after a codon change, expressed in Saccharomyces cerevisiae. Also C- or N-terminal histidine tags were added but as the activity of the enzyme was lost or strongly reduced these were not used. The kinetic properties of the protein were analysed in the cell extract. Substrate specifity was tested with different sugars; L-rhamnose, L-lyxose and L-mannose were oxidated by the enzyme. Vmax values were 180 nkat/mg, 160 nkat/mg and 72 nkat/mg, respectively. The highest affinity was towards L-rhamnose, the Km value being 0.9 mM. Lower affinities were obtained with L-lyxose, Km 4.3 mM, and L-mannose Km 25 mM. Northern analysis was done to study the transcription of RHA1 with different carbon sources. Transcription was observed only on L-rhamnose suggesting that RHA1 expression is L-rhamnose induced. A RHA1 deletion cassette for P. stipitis was constructed but the cassette had integrated randomly and not targeted to delete the RHA1 gene. Enzyme assays for L-lactaldehyde dehydrogenase were done similarly to L-rhamnose dehydrogenase assays. NAD is used as a cofactor also in this reaction where L-lactaldehyde is oxidised to L-lactate. The observed enzyme activities were very low and the activity was lost during the purification procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum effects are often of key importance for the function of biological systems at molecular level. Cellular respiration, where energy is extracted from the reduction of molecular oxygen to water, is no exception. In this work, the end station of the electron transport chain in mitochondria, cytochrome c oxidase, is investigated using quantum chemical methodology. Cytochrome c oxidase contains two haems, haem a and haem a3. Haem a3, with its copper companion, CuB, is involved in the final reduction of oxygen into water. This binuclear centre receives the necessary electrons from haem a. Haem a, in turn, receives its electrons from a copper ion pair in the vicinity, called CuA. Density functional theory (DFT) has been used to clarify the charge and spin distributions of haem a, as well as changes in these during redox activity. Upon reduction, the added electron is shown to be evenly distributed over the entire haem structure, important for the accommodation of the prosthetic group within the protein. At the same time, the spin distribution of the open-shell oxidised state is more localised to the central iron. The exact spin density distribution has been disputed in the literature, however, different experiments indicating different distributions of the unpaired electron. The apparent contradiction is shown to be due to the false assumption of a unit amount of unpaired electron density; in fact, the oxidised state has about 1.3 unpaired electrons. The validity of the DFT results have been corroborated by wave function based coupled cluster calculations. Point charges, for use in classical force field based simulations, have been parameterised for the four metal centres, using a newly developed methodology. In the procedure, the subsystem for which point charges are to be obtained, is surrounded by an outer region, with the purpose of stabilising the inner region, both electronically and structurally. Finally, the possibility of vibrational promotion of the electron transfer step between haem a and a3 has been investigated. Calculating the full vibrational spectra, at DFT level, of a combined model of the two haems, revealed several normal modes that do shift electron density between the haems. The magnitude of the shift was found to be moderate, at most. The proposed mechanism could have an assisting role in the electron transfer, which still seems to be dominated by electron tunnelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments on the leaching of copper from chalcopyrite mineral by the bacterium Thiobacillus ferrooxidans show that, in the presence of adequate amounts of sulphide, iron-grown bacteria preferentially oxidise sulphur in the ore (through direct attachment) rather than ferrous sulphate in solution. At 20% pulp density, the leaching initially takes place by a predominantly direct mechanism. The cell density in the liquid phase increases, but the Fe2+ is not oxidised. However, in the later stages when less solid substrate is available and the cell density becomes very high, the bacteria start oxidising Fe2+ in the liquid phase, thus contributing to the indirect mechanism of leaching. Contrary to expectations, the rate of leaching increased with increasing particle size in spite of the decreasing specific surface area. This has been found to be due to increasing attachment efficiency with increase in particle size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The pathogenesis of diabetic nephropathy remains a matter of debate, although strong evidence suggests that it results from the interaction between susceptibility genes and the diabetic milieu. The true pathogenetic mechanism remains unknown, but a common denominator of micro- and macrovascular complications may exist. Some have suggested that low-grade inflammation and activation of the innate immune system might play a synergistic role in the pathogenesis of diabetic nephropathy. Aims of the study: The present studies were undertaken to investigate whether low-grade inflammation, mannan-binding lectin (MBL) and α-defensin play a role, together with adiponectin, in patients with type 1 diabetes and diabetic nephropathy. Subjects and methods: This study is part of the ongoing Finnish Diabetic Nephropathy Study (FinnDiane). The first four cross-sectional substudies of this thesis comprised 194 patients with type 1 diabetes divided into three groups (normo-, micro-, and macroalbuminuria) according to their albumin excretion rate (AER). The fifth substudy aimed to determine whether baseline serum adiponectin plays a role in the development and progression of diabetic nephropathy. This follow-up study included 1330 patients with type 1 diabetes and a mean follow-up period of five years. The patients were divided into three groups depending on their AER at baseline. As a measure of low-grade inflammation, highly sensitive CRP (hsCRP) and α-defensin were measured with radio-immunoassay, and interleukin-6 (IL-6) with high- sensitivity enzyme immuno-assay. Mannan-binding lectin and adiponectin were determined with time-resolved immunofluorometric assays. The progression of albuminuria from one stage to the other served as a measure of the progression of diabetic nephropathy. Results: Low-grade inflammatory markers, MBL, adiponectin, and α-defensin were all associated with diabetic nephropathy, whereas MBL, adiponectin, and α-defensin per se were unassociated with low-grade inflammatory markers. AER was the only clinical variable independently associated with hsCRP. AER, HDL-cholesterol and the duration of diabetes were independently associated with IL-6. HbA1c was the only variable independently associated with MBL. The estimated glomerular filtration rate (eGFR), AER, and waist-to-hip ratio were independently associated with adiponectin. Systolic blood pressure, HDL-cholesterol, total cholesterol, age, and eGFR were all independently associated with α-defensin. In patients with macroalbuminuria, progression to end-stage renal disease (ESRD) was associated with higher baseline adiponectin concentrations. Discussion and conclusions: Low-grade inflammation, MBL, adiponectin, and defensin were all associated with diabetic nephropathy in these cross-sectional studies. In contrast however, MBL, adiponectin, and defensin were not associated with low-grade inflammatory markers per se. Nor was defensin associated with MBL, which may suggest that these different players function in a coordinated fashion during the deleterious process of diabetic nephropathy. The question of what causes low-grade inflammation in patients with type 1 diabetes and diabetic nephropathy, however, remains unanswered. We could observe in our study that glycemic control, an atherosclerotic lipid profile, and waist-to-hip ratio (WHR) were associated with low-grade inflammation in the univariate analysis, although in the multivariate analysis, only AER, HDL-cholesterol, and the duration of diabetes, as a measure of glycemic load, proved to be independently associated with inflammation. Notably, all these factors are modifiable with changes in lifestyle and/or with a targeted medication. In the follow-up study, elevated serum adiponectin levels at baseline predicted the progression from macroalbuminuria to ESRD independently of renal function at baseline. This observation does not preclude adiponectin as a favorable factor during the process of diabetic nephropathy, since the rise in serum adiponectin concentrations may remain a mechanism by which the body compensates for the demands created by the diabetic milieu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon disulphide, on treatment with alcoholic potash, can readily be oxidised quantitatively by chloramine-T, converting all the sulphur to sulphuric acid. Fourteen equivalents of the oxidant are consumed for every mole of carbon disulphide. Since excess of chloramine-T may be determined iodimetrically, this reaction may be used for the determination of carbon disulphide. It may also be applied to the determination of xanthates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

V2O5 supported on ZrO2 is found to be an excellent sensor for n-propane-butane mixtures at 625 K; in-situ X-ray diffraction studies show that V2O5 is reduced to VO2 with a metastable monoclinic structure on contact with the hydrocarbons and is oxidised back to the parent oxide on exposure to air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation characteristics of 304L stainless steel in compression in the temperature range 20–700°C and strain rate range 0·001–100 s−1 have been studied with the aim of characterising the .flow instabilities occurring in the microstructure. At higher temperatures and strain rates the stainless steel exhibits flow localisation, whereas at temperatures below 500°C and strain rates lower than 0·1 s−1 the flow instabilities are due to dynamic strain aging. Strain induced martensite formation is responsible for the flow instabilities at room temperature and low strain rates (0·01 s−1). In view of the occurrence of these instabilities, cold working is preferable to warm working to achieve dimensional tolerance and reproducible properties in the product. Among the different criteria tested to explain the occurrence of instabilities, the continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing maps for hot working of as-cast and wrought stainless steels of type AISI 304 have been developed in the temperature range 600 to 1250°C and strain rate range 0.001 to 100 s−1. The domain of dynamic recrystallization (DRX) in as-cast material occurs at higher temperatures (1250°C) and lower strain rates (0.001 s−1) than in the wrought steel (1100°C and 0.01 s−1). The effect is explained in terms of enhanced nucleation rate of DRX due to the carbide, ferrite particles, stable oxides/nitrides and second-phase intermetallics in the as-cast microstructure. The DRX domain is wider in the wrought material although the peak efficiency is less (32%) than in the as-cast case (40%). The flow instability regime is not significantly affected by the initial microstructure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.