992 resultados para Optimum-path forest classifiers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
Following the study of Andrade et al. (2009) on regular square lattices, here we investigate the problem of optimal path cracks (OPC) in Complex Networks. In this problem we associate to each site a determined energy. The optimum path is defined as the one among all possible paths that crosses the system which has the minimum cost, namely the sum of the energies along the path. Once the optimum path is determined, at each step, one blocks its site with highest energy, and then a new optimal path is calculated. This procedure is repeated until there is a set of blocked sites forming a macroscopic fracture which connects the opposite sides of the system. The method is applied to a lattice of size L and the density of removed sites is computed. As observed in the work by Andrade et al. (2009), the fractured system studied here also presents different behaviors depending on the level of disorder, namely weak, moderated and strong disorder intensities. In the regime of weak and moderated disorder, while the density of removed sites in the system does not depend of the size L in the case of regular lattices, in the regime of high disorder the density becomes substantially dependent on L. We did the same type of study for Complex Networks. In this case, each new site is connected with m previous ones. As in the previous work, we observe that the density of removed sites presents a similar behavior. Moreover, a new result is obtained, i.e., we analyze the dependency of the disorder with the attachment parameter m
Resumo:
Thesis (Master, Computing) -- Queen's University, 2016-05-29 18:11:34.114
Resumo:
Over the past few years, logging has evolved from from simple printf statements to more complex and widely used logging libraries. Today logging information is used to support various development activities such as fixing bugs, analyzing the results of load tests, monitoring performance and transferring knowledge. Recent research has examined how to improve logging practices by informing developers what to log and where to log. Furthermore, the strong dependence on logging has led to the development of logging libraries that have reduced the intricacies of logging, which has resulted in an abundance of log information. Two recent challenges have emerged as modern software systems start to treat logging as a core aspect of their software. In particular, 1) infrastructural challenges have emerged due to the plethora of logging libraries available today and 2) processing challenges have emerged due to the large number of log processing tools that ingest logs and produce useful information from them. In this thesis, we explore these two challenges. We first explore the infrastructural challenges that arise due to the plethora of logging libraries available today. As systems evolve, their logging infrastructure has to evolve (commonly this is done by migrating to new logging libraries). We explore logging library migrations within Apache Software Foundation (ASF) projects. We i find that close to 14% of the pro jects within the ASF migrate their logging libraries at least once. For processing challenges, we explore the different factors which can affect the likelihood of a logging statement changing in the future in four open source systems namely ActiveMQ, Camel, Cloudstack and Liferay. Such changes are likely to negatively impact the log processing tools that must be updated to accommodate such changes. We find that 20%-45% of the logging statements within the four systems are changed at least once. We construct random forest classifiers and Cox models to determine the likelihood of both just-introduced and long-lived logging statements changing in the future. We find that file ownership, developer experience, log density and SLOC are important factors in determining the stability of logging statements.
Resumo:
Context Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty. Objectives We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks. Methods We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces. Results Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures. Conclusions Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Considering that some species of Culicidae are vectors of pathogens, both the knowledge of the diversity of the mosquito fauna and how some environment factors influence in it, are important subjects. In order to address the composition of Culicidae species in a forest reserve in southern Atlantic Forest, we compared biotic and abiotic environmental determinants and how they were associated with the occurrence of species between sunset and sunrise. The level of conservation of the area was also considered. The investigation was carried out at Reserva Natural do Morro da Mina, in Antonina, state of Paraná, Brazil. We performed sixteen mosquito collections employing Shannon traps at three-hour intervals, from July 2008 to June 2009. The characterization of the area was determined using ecological indices of diversity, evenness, dominance and similarity. We compared the frequency of specimens with abiotic variables, i.e., temperature, relative humidity and pluviosity. Seven thousand four hundred ten mosquito females were captured. They belong to 48 species of 12 genera. The most abundant genera were Anopheles, Culex, Coquillettidia, Aedes and Runchomyia. Among the species, the most abundant was Anopheles cruzii, the primary vector of Plasmodium spp. in the Atlantic Forest. Results of the analyses showed that the abiotic variables we tested did not influence the occurrence of species, although certain values suggested that there was an optimum range for the occurrence of culicid species. It was possible to detect the presence of species of Culicidae with different epidemiologic profiles and habitat preference.