Nature-Inspired Framework for Hyperspectral Band Selection


Autoria(s): Nakamura, Rodrigo Y. M.; Garcia Fonseca, Leila Maria; Santos, Jefersson Alex dos; Torres, Ricardo da S.; Yang, Xin-She; Papa, João Paulo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/04/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Processo FAPESP: 12/18768-0

Processo FAPESP: 11/14058-5

Processo FAPESP: 09/16206-1

Processo FAPESP: 09/18438-7

Processo FAPESP: 08/58112-0

Processo FAPESP: 08/58528-2

Although hyperspectral images acquired by on-board satellites provide information from a wide range of wavelengths in the spectrum, the obtained information is usually highly correlated. This paper proposes a novel framework to reduce the computation cost for large amounts of data based on the efficiency of the optimum-path forest (OPF) classifier and the power of metaheuristic algorithms to solve combinatorial optimizations. Simulations on two public data sets have shown that the proposed framework can indeed improve the effectiveness of the OPF and considerably reduce data storage costs.

Formato

2126-2137

Identificador

http://dx.doi.org/10.1109/TGRS.2013.2258351

Ieee Transactions On Geoscience And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 52, n. 4, p. 2126-2137, 2014.

0196-2892

http://hdl.handle.net/11449/113507

10.1109/TGRS.2013.2258351

WOS:000329527000018

Idioma(s)

eng

Publicador

Institute of Electrical and Electronics Engineers (IEEE)

Relação

IEEE Transactions on Geoscience and Remote Sensing

Direitos

closedAccess

Palavras-Chave #Evolutionary computation #heuristic algorithms #hyperspectral imaging #image classification #pattern recognition
Tipo

info:eu-repo/semantics/article