917 resultados para N-acetyl cysteine
Resumo:
The structure of a new cysteine framework (-C-CC-C-C-C) ``M''-superfamily conotoxin, Mo3964, shows it to have a beta-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K+ currents in rat dorsal root ganglion neurons and increases the reversal potential of the Na(V)1.2 channels. The structure of Mo3964 (PDB ID: 2MW7) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the ``M''-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)J(NC') scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 +/- 0.18 angstrom, with 87% and 13% of the backbone dihedral (phi, psi) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.
Resumo:
The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pK(a) value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides shift in the dissociation constant values as compared with the isolated accurate estimates of the pK(a) and correctly predicts the cysteine amino acid.
Resumo:
A new triphenylamine-based organometallic Pt-II luminogen (1) and its analogous organic compound (2) are reported. The molecules are decorated with aldehyde functionality to improve their photophysical properties by utilising donor-acceptor interactions. The single crystal X-ray structure analysis of PtII analogue 1 revealed that the neighbouring molecules were loosely organised by weak intermolecular C-H center dot center dot center dot pi interactions. Because of the twisted nature of the triphenylamine backbone the compounds showed aggregation-induced emission enhancement in THF/water mixture. Due to their loose crystal packing, upon application of external stimuli these luminogens exhibited mechano-fluorochromic behaviour. The crystalline forms of the compounds displayed a more superior emission efficiency than the grinded samples. Moreover, the compounds showed crystallization-induced emission enhancement (CIEE) and exhibited chemodosimetric response towards cysteine under physiological condition.
Resumo:
Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.
Resumo:
A family of chiral ligands derived from alpha-phenylethylamine and 2-aminobenzophenone were prepared by alkylation of the nitrogen atom. Upon reaction with glycine and a Ni(II) salt, these ligands were transformed into diastereomeric complexes, as a result of the configurational stability of the stereogenic nitrogen atom. Different diastereomeric ratios were observed depending on the substituent R introduced in the starting ligand, and stereochemical assignments were based on X-ray analysis, along with NMR studies and optical rotation measurements.
Resumo:
Three 26 kDa proteins, named as TJ-CRVP, NA-CRVP1 and NA-CRVP2, were isolated from the venoms of Trimeresurus jerdonii and Naja atra, respectively. The N-terminal sequences of TJ-CRVP and NA-CRVPs were determined. These components were devoid of the enzymatic activities tested, such as phospholipase A(2), arginine esterase, proteolysis, L-amino acid oxidase, 5' nucleotidase, acetylcholinesterase. Furthermore, these three components did not have the following biological activities: coagulant and anticoagulant activities, lethal activity, myotoxicity, hemorrhagic activity, platelet aggregation and platelet aggregation-inhibiting activities. These proteins are named as cysteine-rich venom protein (CRVP) because their sequences showed high level of similarity with mammalian cysteine-rich secretory protein (CRISP) family. Recently, some CRISP-like proteins were also isolated from several different snake venoms, including Agkistrodon blomhoffi, Trimeresurus flavoviridis, Lanticauda semifascita and king cobra. We presumed that CRVP might be a common component in snake venoms. Of particular interest, phylogenetic analysis and sequence alignment showed that NA-CRVP1 and ophanin, both from elapid snakes, share higher similarity with CRVPs from Viperidae snakes. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A variety of N-acetyl-o-aryl-1,2-didehydroethylamines were synthesized by direct reduction-acetylation of beta-aryl-nitroolefins and assayed as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the first time. Compound 7a exhibited a TI v
Resumo:
Multiple type I interferons (IFNs) have recently been identified in salmonids, containing two or four conserved cysteines. In this work, a novel two-cysteine containing (2C) IFN gene was identified in rainbow trout. This novel trout IFN gene (termed IFN5) formed a phylogenetic group that is distinct from the other three salmonid IFN groups sequenced to date and had a close evolutionary relationship with IFNs from advanced fish species. Our data demonstrate that two subgroups are apparent within each of the 2C and 4C type I IFNs, an evolutionary outcome possibly due to two rounds of genome duplication events that have occurred within teleosts. We have examined gene expression of the trout 2C type I IFN in cultured cells following stimulation with lipopolysaccharide, phytohaemagglutinin, polyI:C or recombinant IFN, or after transfection with polyI:C. The kinetics of gene expression was also studied after viral infection. Analysis of the regulatory elements in the IFN promoter region predicted several binding sites for key transcription factors that potentially play an important role in mediating IFN5 gene expression.
Resumo:
Taenia solium metacestode, a larval pork tapeworm, is a causative agent of neurocysticercosis, one of the most common parasitic diseases in the human central nervous system. In this study, we identified a cDNA encoding for a cathepsin L-like cysteine protease from the T solium metacestode (TsCL-1) and characterized the biochemical properties of the recombinant enzyme. The cloned cDNA of 1216 bp encoded 339 amino acids with an approximate molecular weight of 37.6 kDa which containing a typical signal peptide sequence (17 amino acids), a pro-domain (106 amino acids), and a mature domain (216 amino acids). Sequence alignments of TsCL-1 showed low sequence similarity of 27.3-44.6 to cathepsin L-like cysteine proteases from other helminth parasites, but the similarity was increased to 35.9-55.0 when compared to mature domains. The bacterially expressed recombinant protein (rTsCL-1) did not show enzyme activity; however, the rTsCL-1 expressed in Pichia pastoris showed typical biochemical characteristics of cysteine proteases. It degraded human immunoglobulin G (IgG) and bovine serum albumin (BSA), but not collagen. Western blot analysis of the rTsCL-1 showed antigenicity against the sera from patients with cysticercosis, sparganosis or fascioliasis, but weak or no antigenicity against the sera from patients with paragonimiasis or clonorchiasis. (c) 2006 Published by Elsevier B.V.
Resumo:
We investigated the effects of Ginsenoside R-e on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or 100 mu M of Ginsenoside R-e. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the H-3-arginine to H-3-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside R-e significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside R-e. And pretreatment with a NOS inhibitor N-omega-Nitro-L-arginine methyl ester (L-NAME, 100 mu M) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside R-e. Data suggested that Ginsenoside R-e is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.
Resumo:
The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.
Resumo:
A facile and efficient one-pot synthesis of substituted cyclophosphamidic chlorides and their analogues has been developed from readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro4H-pyrans.