969 resultados para Motion estimation
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
We present a novel method to perform an accurate registration of 3-D nonrigid bodies by using phase-shift properties of the dual-tree complex wavelet transform (DT-CWT). Since the phases of DT-\BBCWT coefficients change approximately linearly with the amount of feature displacement in the spatial domain, motion can be estimated using the phase information from these coefficients. The motion estimation is performed iteratively: first by using coarser level complex coefficients to determine large motion components and then by employing finer level coefficients to refine the motion field. We use a parametric affine model to describe the motion, where the affine parameters are found locally by substituting into an optical flow model and by solving the resulting overdetermined set of equations. From the estimated affine parameters, the motion field between the sensed and the reference data sets can be generated, and the sensed data set then can be shifted and interpolated spatially to align with the reference data set. © 2011 IEEE.
Resumo:
In this paper, we propose a watermarking algorithm in the complex wavelet domain. We then model watermarking as a communication process and show that the complex wavelet domain has relatively high capacity and is a potentially good domain for watermarking. Finally, a technique for registering geometrically distorted images, which is based on motion estimation in the wavelet domain, is described. The registration process can assist watermark detection in a watermarked image attacked by Stirmark, for example.
Resumo:
The use of mixture-model techniques for motion estimation and image sequence segmentation was discussed. The issues such as modeling of occlusion and uncovering, determining the relative depth of the objects in a scene, and estimating the number of objects in a scene were also investigated. The segmentation algorithm was found to be computationally demanding, but the computational requirements were reduced as the motion parameters and segmentation of the frame were initialized. The method provided a stable description, in whichthe addition and removal of objects from the description corresponded to the entry and exit of objects from the scene.
Resumo:
The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.
Resumo:
Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.
Resumo:
The commercial far-range (>10m) infrastructure spatial data collection methods are not completely automated. They need significant amount of manual post-processing work and in some cases, the equipment costs are significant. This paper presents a method that is the first step of a stereo videogrammetric framework and holds the promise to address these issues. Under this method, video streams are initially collected from a calibrated set of two video cameras. For each pair of simultaneous video frames, visual feature points are detected and their spatial coordinates are then computed. The result, in the form of a sparse 3D point cloud, is the basis for the next steps in the framework (i.e., camera motion estimation and dense 3D reconstruction). A set of data, collected from an ongoing infrastructure project, is used to show the merits of the method. Comparison with existing tools is also shown, to indicate the performance differences of the proposed method in the level of automation and the accuracy of results.
Resumo:
提出了一种基于双目视觉三维重建不确定性的环境动态特征滤除方法。针对利用立体视觉系统对机器人进行运动估计时,环境中的动态目标和环境静态背景与机器人的空间相对运动具有不一致性,将严重影响系统的精度的问题。根据动态目标与环境背景的空间运动不一致性,分析立体视觉三维重建的不确定性,利用重建的不确定性估计机器人与环境间的相对运动,通过随机一致性方法(RANSAC)滤除图像中的环境动态特征。仿真实验结果表明了本方法的可行性和有效性。
Resumo:
Liu, Yonghuai. Improving ICP with Easy Implementation for Free Form Surface Matching. Pattern Recognition, vol. 37, no. 2, pp. 211-226, 2004.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.
Resumo:
Hardware synthesis from dataflow graphs of signal processing systems is a growing research area as focus shifts to high level design methodologies. For data intensive systems, dataflow based synthesis can lead to an inefficient usage of memory due to the restrictive nature of synchronous dataflow and its inability to easily model data reuse. This paper explores how dataflow graph changes can be used to drive both the on-chip and off-chip memory organisation and how these memory architectures can be mapped to a hardware implementation. By exploiting the data reuse inherent to many image processing algorithms and by creating memory hierarchies, off-chip memory bandwidth can be reduced by a factor of a thousand from the original dataflow graph level specification of a motion estimation algorithm, with a minimal increase in memory size. This analysis is verified using results gathered from implementation of the motion estimation algorithm on a Xilinx Virtex-4 FPGA, where the delay between the memories and processing elements drops from 14.2 ns down to 1.878 ns through the refinement of the memory architecture. Care must be taken when modeling these algorithms however, as inefficiencies in these models can be easily translated into overuse of hardware resources.
Resumo:
For modern FPGA, implementation of memory intensive processing applications such as high end image and video processing systems necessitates manual design of complex multilevel memory hierarchies incorporating off-chip DDR and onchip BRAM and LUT RAM. In fact, automated synthesis of multi-level memory hierarchies is an open problem facing high level synthesis technologies for FPGA devices. In this paper we describe the first automated solution to this problem.
By exploiting a novel dataflow application modelling dialect, known as Valved Dataflow, we show for the first time how, not only can such architectures be automatically derived, but also that the resulting implementations support real-time processing for current image processing application standards such as H.264. We demonstrate the viability of this approach by reporting the performance and cost of hierarchies automatically generated for Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications on Virtex-5 FPGA.
Resumo:
Realising high performance image and signal processing
applications on modern FPGA presents a challenging implementation problem due to the large data frames streaming through these systems. Specifically, to meet the high bandwidth and data storage demands of these applications, complex hierarchical memory architectures must be manually specified
at the Register Transfer Level (RTL). Automated approaches which convert high-level operation descriptions, for instance in the form of C programs, to an FPGA architecture, are unable to automatically realise such architectures. This paper
presents a solution to this problem. It presents a compiler to automatically derive such memory architectures from a C program. By transforming the input C program to a unique dataflow modelling dialect, known as Valved Dataflow (VDF), a mapping and synthesis approach developed for this dialect can
be exploited to automatically create high performance image and video processing architectures. Memory intensive C kernels for Motion Estimation (CIF Frames at 30 fps), Matrix Multiplication (128x128 @ 500 iter/sec) and Sobel Edge Detection (720p @ 30 fps), which are unrealisable by current state-of-the-art C-based synthesis tools, are automatically derived from a C description of the algorithm.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.