843 resultados para Metallographic microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study on the microstructure of two series of copolyperoxides of alpha-methylstyrene, with styrene and with methylmethacrylate. The copolyperoxides were synthesized by the free radical-initiated oxidative copolymerization of the vinyl monomer pairs. The copolyperoxide compositions obtained from the H-1 and C-13 NMR spectra led to the determination of the reactivity ratios. The product of the reactivity ratios indicates that alpha-methylstyrene forms a block copolyperoxide with styrene and a random copolyperoxide with methylmethacrylate. Microstructural parameters like average sequence length, run number, etc. have been determined for the latter copolyperoxide from analysis of its C-13 NMR spectrum. The aromatic quaternary and carbonyl carbons were found to be sensitive to triad sequences. The end groups of the copolyperoxides have been identified by H-1 NMR as well as FTIR spectroscopic techniques. The thermal degradation of the copolyperoxides has been studied by differential scanning calorimetry, which confirms the alternating peroxide units in the copolyperoxide chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation kinetics of the quenched dilute Ti-1.6 at.-%N alloy has been followed by resistivity measurements at 77 K using the four probe method. Resistivity behaviour has been studied for various durations for the alloys aged in the temperature range 273-373 K. The resistivity behaviour has been explained on the basis of the growth and decay of interfacial strain fields associated with the precipitation process. In addition, the resistivity changes have been correlated with transmission electron microscopy observations. (C) 1995 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification of a ternary Al-Cu-Zr alloy results in a nanocomposite microstructure. In this study, melt spinning a Al82Cu15Zr3 alloy has resulted in the combined occurrence of, (a) 0.5 mu m sized grains of Al solid solution and (b) fine grains (10-20 nm) of intermetallic Al2Cu (theta) and alpha-Al, along side each other. The larger alpha-Al grains contain nanometric GP zones, with the Zr addition resulting in a grain refinement. In the other type of microstructure Zr promotes simultaneous nucleation of nanosized grains of the two equilibrium phases, Al2Cu and alpha-Al. Both these lead to a very high hardness of similar to 540 VHN for this alloy and can be used as a candidate for a high strength alloy with good ductility at a low strain rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Role of swift heavy ion irradiation on the modification of transport and structural properties of high temperature superconductors is studied. Good quality YBCO thin films prepared by high pressure oxygen sputtering and laser ablation were used in this investigation. Resistivity and atomic force microscopy (AFM) were mainly used to probe superconducting and microstructural modifications resulted from the irradiation of high energy and heavy ions like 100 MeV oxygen and 200 MeV silver. Radiation induced sputtering or erosion is likely to be a major disastrous component of such high energy irradiation that could be powerful in masking phase coherence effects, atleast in grain boundaries. The extent of damage/nature of defects other than columnar defects produced by swift heavy ions is discussed in the light of AFM measurements. The effect of high energy oxygen ion irradiation is anomalous. A clear annealing effect at higher doses is seen. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the microstructure of thin films grown by metal-organic chemical vapour deposition using a beta-diketonate complex of cobalt, namely cobalt (11) acetylacetonate. Films were deposited on three different substrates: Si(100), thermally oxidised silicon [SiO2/Si(100)] and glass at the same time. As-grown films were characterised by X-ray diffraction, scanning electron microscopy, scanning tunnelling microscopy, atomic force microscopy and secondary ion mass spectrometry. Electrical resistivity was measured for all the films as a function of temperature. We found that films have very fine grains, resulting in high electrical resistivity Further, film microstructure has a strong dependence on the nature of the substrate and there is diffusion of silicon and oxygen into cobalt from the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of powder processing and sintering temperature on densification, microstructure and mechanical properties of hydroxyapatite (HAp) ceramics was studied. The as-dried, calcined and processed HAp powders were uniaxially compacted and sintered at various temperatures (1000-1400 degreesC) for 3 h. The as-dried and processed powders, attained 97% of theoretical density (TD) at 1100 degreesC) at higher sintering temperatures, the density of the as-dried powder compact was found to decrease. A uniform microstructure with fine grain size (2.3 pm) was observed for material obtained from processed powder, whereas exaggerated grain growth with closed pores were observed in as-dried and unprocessed powder compacts. The Vickers' hardness, fracture toughness and flexural strength of HAp were determined and a maximum value of 6.3 GPa and 0.88 MPam(1/2) and 60.3 MPa, respectively were obtained for processed compact. The processing of HAp has improved its densification, microstructure homogeneity and mechanical properties. (C) 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize vertically aligned arrays of carbon nanotubes (CNTs) in a chemical vapor deposition system with floating catalyst, using different concentrations of hydrogen in the gas feedstock. We report the effect of different hydrogen concentrations on the microstructure and mechanical properties of the resulting material. We show that a lower hydrogen concentration during synthesis results in the growth of stiffer CNT arrays with higher average bulk density. A lower hydrogen concentration also leads to the synthesis of CNT arrays that can reach higher peak stress at maximum compressive strain, and dissipate a larger amount of energy during compression. The individual CNTs in the arrays synthesized with a lower hydrogen concentration have, on average, larger outer diameters (associated with the growth of CNTs with a larger number of walls), but present a less uniform diameter distribution. The overall heights of the arrays and their strain recovery after compression have been found to be independent of the hydrogen concentration during growth. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.