943 resultados para Library and Archives Canada
Resumo:
The use of nanoparticle technology in consumer products has been increasing due to their broad-spectrum antimicrobial properties. Specifically, silver nanoparticles (AgNPs) can demonstrate distinct physiochemical properties compared to bulk silver, including a large surface area to volume ratio that allows for higher reactivity with bacterial cell surfaces. AgNPs are being released into the environment, including soil ecosystems through various pathways such as points of production or during disposal of silver-containing products. This raises the concern about the potential impact on beneficial soil bacteria and their surrounding ecosystems. Members of the Rhizobiaceae family play important roles in nutrient cycling and contribute to overall soil fertility and the experiments in this thesis address the potential for AgNP-mediated toxicity on these plant-associating bacteria. Respiration analysis of Bradyrhizobium japonicum, Azospirillum brasilense, and Agrobacterium tumefaciens has revealed that AgNPs can negatively impact the growth and survival of these bacterial species, with B. japonicum being the most susceptible. Additionally, swimming motility assays using B. japonicum showed a significant decrease in colony diameter when treated with AgNPs (50 ppm). A significant decrease in root colonization of Triticum aestivum roots by A. brasilense was observed as AgNP treatment concentrations increased. Although some of the experiments could not be completed, taken together, these experiments and the research reported herein highlights the potential toxicological effects of AgNPs on bacterial species vital to the growth and health of agriculturally important crops.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
This dissertation relates job desires and outcomes to the Dark Personality (Psychopathy, Machiavellianism, Narcissism, Low Agreeableness, Low Honesty-Humility) in the United States Army. It purports that individuals high on the Dark Personality desire more power, money, and status, and that they obtain jobs that afford them these luxuries by using manipulation at work. Two pilot studies used samples of United States Army members to create and test index variables: Dark Personality, Total Manipulation in the workplace, Desire for Job Success, and Total Job Success in the Army. Individual personality traits, manipulation tactics, and job desires were examined in secondary analyses. Using a sample of 468 United States Army Members, central analyses indicated that Army members high on the Dark Personality desired Job Success. Likewise, army members higher on the Dark Personality used more Manipulation tactics at work, including the egregious tactics. Yet, using more Manipulation tactics at work predicted lower levels of Job Success in the Army. Most manipulation tactics had a negative impact on Job Success, with the exception of soft tactics like Reason and Responsibility Invocation. Together, these results indicate that selective use of soft manipulation predicted Job Success, but use of more manipulation tactics predicted less Job Success in the Army. Curvilinear results indicated that being either very low or very high on the Dark Personality predicted more Job Success in the Army, whereas having intermediate levels of the Dark Personality predicted less Job Success. Finally, possessing the Dark Personality and using more Manipulation tactics at work, together, predicted less Job Success in the Army. Collectively, the results indicate that army members with intermediate levels of the Dark Personality want more powerful and high paying jobs, yet their strategy of manipulating their coworkers to move up the job ladder does not result in higher ranking, higher paying Army positions. However, Army members highest on the Dark Personality achieved job success, defying the maladaptive influence that antisocial personality traits and manipulative behaviour had on job success for most Army members. Therefore, this dissertation indicates that successful corporate scoundrels exist in the Army, but there are few of them.
Resumo:
Decellularized adipose tissue (DAT) is a promising biomaterial for soft tissue regeneration, and it provides a highly conducive microenvironment for human adipose-derived stem/stromal cell (ASC) attachment, proliferation, and adipogenesis. This thesis focused on developing techniques to fabricate 3-D bioscaffolds from enzymatically-digested DAT as platforms for ASC culture and delivery in adipose tissue engineering and large-scale ASC expansion. Initial work investigated chemically crosslinked microcarriers fabricated from pepsin-digested DAT as injectable adipo-inductive substrates for ASCs. DAT microcarriers highly supported ASC adipogenesis compared to gelatin microcarriers in a CELLSPIN system, as confirmed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, lipid accumulation, and endpoint RT-PCR. ASCs cultured on DAT microcarriers in proliferation medium also had elevated PPARγ, C/EBPα, and LPL expression which suggested adipo-inductive properties. In vivo testing of the DAT microcarriers exhibited stable volume retention and enhanced cellular infiltration, tissue remodeling, and angiogenesis. Building from this work, non-chemically crosslinked porous foams and bead foams were fabricated from α-amylase-digested DAT for soft tissue regeneration. Foams were stable and strongly supported ASC adipogenesis based on GPDH activity and endpoint RT-PCR. PPARγ, C/EBPα, and LPL expression in ASCs cultured on the foams in proliferation media indicated adipo-inductive properties. Foams with Young’s moduli similar to human fat also influenced ASC adipogenesis by enhanced GPDH activity. In vivo adipogenesis accompanied by a potent angiogenic response and rapid resorption showed their potential use in wound healing applications. Finally, non-chemically crosslinked porous microcarriers synthesized from α-amylase-digested DAT were investigated for ASC expansion. DAT microcarriers remained stable in culture and supported significantly higher ASC proliferation compared to Cultispher-S microcarriers in a CELLSPIN system. ASC immunophenotype was preserved for all expanded groups, with reduced adhesion marker expression under dynamic conditions. DAT microcarrier expansion upregulated ASC expression of early adipogenic (PPARγ, LPL) and chondrogenic (COMP) markers without inducing a mature phenotype. DAT microcarrier expanded ASCs also showed similar levels of adipogenesis and osteogenesis compared to Cultispher-S despite a significantly higher population fold-change, and had the highest level of chondrogenesis among all groups. This study demonstrates the promising use of DAT microcarriers as a clinically relevant strategy for ASC expansion while maintaining multilineage differentiation capacity.
Resumo:
Background Many breast cancer survivors continue to have a broad range of physical and psychosocial problems after breast cancer treatment. As cancer centres move forward with earlier discharge of stable breast cancer survivors to primary care follow-up it is important that comprehensive evidence-based breast cancer survivorship care is implemented to effectively address these needs. Research suggests primary care providers are willing to provide breast cancer survivorship care but many lack the knowledge and confidence to provide evidence-based care. Purpose The overall purpose of this thesis was to determine the challenges, strengths and opportunities related to implementing comprehensive evidence-based breast cancer survivorship guidelines by primary care physicians and nurse practitioners in southeastern Ontario. Methods This mixed-methods research was conducted in three phases: (1) synthesis and appraisal of clinical practice guidelines relevant to provision of breast cancer survivorship care within the primary care practice setting; (2) a brief quantitative survey of primary care providers to determine actual practices related to provision of evidence-based breast cancer survivorship care; and (3) individual interviews with primary care providers about the challenges, strengths and opportunities related to provision of comprehensive evidence-based breast cancer survivorship care. Results and Conclusions In the first phase, a comprehensive clinical practice framework was created to guide provision of breast cancer survivorship care and consisted of a one-page checklist outlining breast cancer survivorship issues relevant to primary care, a three-page summary of key recommendations, and a one-page list of guideline sources. The second phase identified several knowledge and practice gaps, and it was determined that guideline implementation rates were higher for recommendations related to prevention and surveillance aspects of survivorship care and lowest related to screening for and management of long-term effects. The third phase identified three major challenges to providing breast cancer survivorship care: inconsistent educational preparation, provider anxieties, and primary care burden; and three major strengths or opportunities to facilitate implementation of survivorship care guidelines: tools and technology, empowering survivors, and optimizing nursing roles. A better understanding of these challenges, strengths and opportunities will inform development of targeted knowledge translation interventions to provide support and education to primary care providers.
Resumo:
Climate warming is predicted to increase summer air temperatures in the Arctic, warming soils and enhancing microbial decomposition of soil organic matter. Given the size of the soil carbon stores in the Arctic, even a fraction of its release as CO2 to the atmosphere could result in a positive feedback to climate warming. Fertilizers have been used in the past to quickly increase soil solution nutrients pools to mimic predicted concentrations under climate warming. However, because it may have inadvertent affects on the soil microbial community, fertilizer-induced patterns in microbial decomposition may be unrealistic. This study aimed to better understand the proposed mechanism of enhanced microbial decomposition under nutrient addition and warming treatments to discern whether warming alone is enough to stimulate enhanced microbial decomposition, or if nutrients in excess (i.e. chronic high nutrient additions) are necessary to yield such a response. I investigated the impacts of 10 years of greenhouse summer warming, chronic low nutrient factorial addition (5 g N and 1g P m-2 year-1, respectively), and chronic high nutrient factorial addition (10 g N and 5g P m-2 year-1, respectively) treatments on a mesic birch hummock tundra ecosystem near Daring Lake, NWT, Canada. Soil microbial nutrient pools, soil solution nutrient pools, and microbial community structure were measured in the upper organic, lower organic, and uppermost mineral soil depth intervals of all treatment plots in Spring 2014. Interestingly, the low nutrient additions did not yield any significant trends, yet the warming treatment increased soil bacterial richness suggesting a legacy effect of warming from the previous summers. Enhanced microbial nutrient uptake occurred only in the high nutrient addition treatments, and did not significantly alter soil carbon at least within the ten year period of this experiment. Together, these results and the absence of significant impacts of the low nutrient and greenhouse warming treatments suggests that nutrient and carbon cycling in these low arctic soils may be resilient against climate warming, at least over the initial decades.
Resumo:
High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.
Disruptive Threads and Renegade Yarns: Domestic Textile Making in Selected Women's Writing 1811-1925
Resumo:
Images of domestic textiles (items made at home for consumption within the household) and textile making form an important subtext to women’s writing, both during and after industrialization. Through a close reading of five novels from the period 1811-1925, this thesis will assert that a detailed understanding of textile work and its place in women’s daily lives is critical to a deeper understanding of social, sexual and political issues from a woman’s perspective. The first chapter will explore the history of the relationship between women and domestic textile making, and the changes wrought to the latter by the Industrial Revolution. The second chapter will examine the role of embroidery in the construction of “appropriate” feminine gentility in Jane Austen’s Mansfield Park (1814). The third chapter, on Elizabeth Gaskell’s Cranford (1853), will explore how the older female body became a repository for anxieties about class mobility and female power at the beginning of the Victorian era. The fourth chapter will compare Sara Jeannette Duncan’s A Social Departure (1890) and Kate Chopin’s The Awakening (1899) to consider how later Victorian women both internalized and refuted public narratives of domestic textile making in a quest for “self-ownership.” The last chapter, on Martha Ostenso’s Wild Geese (1925), examines the corrosive, yet ultimately redemptive, relationships of a family of women trapped by abuse and degradation. For all five authors, images of textiles and textile making allow them to speak to issues that were usually only discussed within a community of women: sexuality, desire, aging, marriage, and motherhood. In all five works, textile making “talks back” to the power structures that marginalize women, and lends insight into the material and emotional circumstances of women’s lives.
Bullying Involvement and Adolescent Substance Use: A Study of Multilevel Risk and Protective Factors
Resumo:
Bullying, frequent drunkenness, and frequent cannabis use are significant health-risk behaviours among youth. While many studies have demonstrated that bullying involvement may initiate a developmental pathway to both types of frequent substance use, there is a limited understanding of the connection between these behaviours. The presence of risk and protective factors within youths’ relationships and within their neighbourhoods may alter the associations between bullying involvement and both types of frequent substance use. A systemic approach is needed to assess the complex, social environments in which youth are embedded. The current thesis consists of two studies that examined the associations between bullying and both types of frequent substance use within the context of youths’ social environments. In Study 1, multilevel modeling was used to examine the associations between bullying and frequent substance use within the context of individual and neighbourhood risk factors. Our results indicated that the risk factors associated with both frequent drunkenness and frequent cannabis use exist at both levels, with neighbourhoods altering the association of individual risk factors. Moreover, bullying was a unique risk factor associated with both types of frequent substance use, whereas indirect associations were observed for victimization. Study 2 used a similar methodology to examine the association between bullying and both types of frequent substance use within the context of individual and neighbourhood protective factors. Once again, our results indicated that the protective factors associated with both types of frequent substance use exist at multiple levels, and that neighbourhoods altered the association of individual protective factors. Additionally, positive relationship characteristics interacted with the link between bullying and both types of frequent substance use. Together, these findings clarify the nature of the bullying-substance use link and emphasize the need to study adolescent development in context.
Resumo:
Scientific reading research has produced substantial evidence linking specific reading components to a range of constructs including phonological awareness (PA), morphological awareness, orthographic processing (OP), rapid automatized naming, working memory and vocabulary. There is a paucity of research on Arabic, although 420 million people around the world (Gordon, 2005) speak Arabic. As a Semitic language, Arabic differs in many ways from Indo-European languages. Over the past three decades, literacy research has begun to elucidate the importance of morphological awareness (MA) in reading. Morphology is a salient aspect of Arabic word structure. This study was designed to (a) examine the dimensions underlying MA in Arabic; (b) determine how well MA predicts reading; (c) investigate the role of the standard predictors in different reading outcomes; and (d) investigate the construct of reading in Arabic. This study was undertaken in two phases. In Phase I, 10 MA measures and two reading measures were developed, and tested in a sample of 102 Grade 3 Arabic-speaking children. Factor analysis of the 10 MA tasks yielded one predominant factor supporting the construct validity of MA in Arabic. Hierarchical regression analyses, controlling for age and gender, indicated that the MA factor solution accounted for 41– 43% of the variance in reading. In Phase II, the widely studied predictor measures were developed for PA and OP in addition to one additional measure of MA (root awareness), and three reading measures In Phase II, all measures were administered to another sample of 201 Grade 3 Arabic-speaking children. The construct of reading in Arabic was examined using factor analysis. The joint and unique effects of all standard predictors were examined using different sets of hierarchical regression analyses. Results of Phase II showed that: (a) all five reading measures loaded on one factor; (b) MA consistently accounted for unique variance in reading, particularly in comprehension, above and beyond the standard predictors; and (c) the standard predictors had differential contributions. These findings underscore the contribution of MA to all components of Arabic reading. The need for more emphasis on including morphology in Arabic reading instruction and assessment is discussed.
Resumo:
How do the magnetic fields of massive stars evolve over time? Are their gyrochronological ages consistent with ages inferred from evolutionary tracks? Why do most stars predicted to host Centrifugal Magnetospheres (CMs) display no H$\alpha$ emission? Does plasma escape from CMs via centrifugal breakout events, or by a steady-state leakage mechanism? This thesis investigates these questions via a population study with a sample of 51 magnetic early B-type stars. The longitudinal magnetic field \bz~was measured from Least Squares Deconvolution profiles extracted from high-resolution spectropolarimetric data. New rotational periods $P_{\rm rot}$ were determined for 15 stars from \bz, leaving only 3 stars for which $P_{\rm rot}$ is unknown. Projected rotational velocities \vsini~were measured from multiple spectral lines. Effective temperatures and surface gravities were measured via ionization balances and line profile fitting of H Balmer lines. Fundamental physical parameters, \bz, \vsini, and $P_{\rm rot}$ were then used to determine radii, masses, ages, dipole oblique rotator model, stellar wind, magnetospheric, and spindown parameters using a Monte Carlo approach that self-consistently calculates all parameters while accounting for all available constraints on stellar properties. Dipole magnetic field strengths $B_{\rm d}$ follow a log-normal distribution similar to that of Ap stars, and decline over time in a fashion consistent with the expected conservation of fossil magnetic flux. $P_{\rm rot}$ increases with fractional main sequence age, mass, and $B_{\rm d}$, as expected from magnetospheric braking. However, comparison of evolutionary track ages to maximum spindown ages $t_{\rm S,max}$ shows that initial rotation fractions may be far below critical for stars with $M_*>10 M_\odot$. Computing $t_{\rm S,max}$ with different mass-loss prescriptions indicates that the mass-loss rates of B-type stars are likely much lower than expected from extrapolation from O-type stars. Stars with H$\alpha$ in emission and absorption occupy distinct regions in the updated rotation-magnetic confinement diagram: H$\alpha$-bright stars are found to be younger, more rapidly rotating, and more strongly magnetized than the general population. Emission strength is sensitive both to the volume of the CM and to the mass-loss rate, favouring leakage over centrifugal breakout.
Resumo:
The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.
Resumo:
Canadian young people are increasingly more connected through technological devices. This computer-mediated communication (CMC) can result in heightened connection and social support but can also lead to inadequate personal and physical connections. As technology evolves, its influence on health and well-being is important to investigate, especially among youth. This study aims to investigate the potential influences of computer-mediated communication (CMC) on the health of Canadian youth, using both quantitative and qualitative research approaches. This mixed-methods study utilized data from the 2013-2014 Health Behaviour in School-aged Children survey for Canada (n=30,117) and focus group data involving Ontario youth (7 groups involving 40 youth). In the quantitative component, a random-effects multilevel Poisson regression was employed to identify the effects of CMC on loneliness, stratified to explore interaction with family communication quality. A qualitative, inductive content analysis was applied to the focus group transcripts using a grounded theory inspired methodology. Through open line-by-line coding followed by axial coding, main categories and themes were identified. The quality of family communication modified the association between CMC use and loneliness. Among youth experiencing the highest quartile of family communication, daily use of verbal and social media CMC was significantly associated with reports of loneliness. The qualitative analysis revealed two overarching concepts that: (1) the health impacts of CMC are multidimensional and (2) there exists a duality of both positive and negative influences of CMC on health. Four themes were identified within this framework: (1) physical activity, (2) mental and emotional disturbance, (3) mindfulness, and (4) relationships. Overall, there is a high proportion of loneliness among Canadian youth, but this is not uniform for all. The associations between CMC and health are influenced by external and contextual factors, including family communication quality. Further, the technologically rich world in which young people live has a diverse impact on their health. For youth, their relationships with others and the context of CMC use shape overall influences on their health.
Resumo:
This thesis reports the synthesis and/or applications of three types of block copolymers that each bear a low-surface-energy block. First, poly(dimethylsiloxane)-block-poly(2-cinnamoyloxyethyl acrylate) (PDMS-b-PCEA) was synthesized and characterized. Cotton coating using a micellar solution of this block copolymer yielded superhydrophobic cotton fabrics. X-ray photoelectron spectroscopy (XPS) and surface property analyses indicated that the PDMS block topped the polymer coating. Photocuring the cotton swatches crosslinked the underlying PCEA layer and yielded permanent coatings. More interestingly, hydrophilically patterned superhydrophobic cotton fabrics were produced using photolithography that allowed the crosslinking of the coating around irradiated fibers but the removal, by solvent extraction, of the coating on fibers that were not irradiated. Since water-based ink only permeated the uncoated regions, such patterned fabric was further used to print ink patterns onto substrates such as fabrics, cardboard, paper, wood, and aluminum foil. Then, another PDMS-based diblock copolymer poly(dimethylsiloxane)-block-poly(glycidyl methacrylate) (PDMS-b-PGMA) was prepared. Different from PCEA that photocrosslinked around cotton fibers, PGMA reacted with hydroxyl groups on cotton fiber surfaces to get covalently attached. Further, different PGMA chains crosslinked with each other. PDMS-b-PGMA-coated cotton fabrics have been used for oil-water separations. In addition, polymeric nanoparticles were grafted onto cotton fiber surface before PDMS-b-PGMA was used to cover the surfaces of the grafted spheres and the residual surfaces of the cotton fibers. These two types of fabrics, coated by the block copolymer alone or by the polymer nanospheres and then the copolymer, were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and water repellency analyses. A comprehensive comparative study was made of their performances in oil-water separation. Finally, a fluorinated ABC triblock copolymer poly(acrylic acid)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(2-perfluorooctylethyl methacrylate) (PAA-b-PCEMA-b-PFOEMA) was used to iii encapsulate air nanobubbles. The produced air nanobubbles were thermodynamically stable in water and were some 100 times more stable than commercially available perfluorocarbon-filled microbubbles under ultrasound. These nanobubbles, due to their small sizes and thus ability to permeate the capillary networks of organs and to reach tumors, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery.
Resumo:
INTRODUCTION: Low levels of methylation within repetitive DNA elements, such as long interspersed nuclear element-1 (LINE-1) and Alu repeats, are believed to epigenetically predispose an individual to cancer and other diseases. The extent to which lifestyle factors affect the degree of DNA methylation within these genomic regions has yet to be fully understood. Adiposity and sex hormones are established risk factors for certain types of cancer and other illnesses, particularly amongst postmenopausal women. The aim of the current investigation is to assess the impact of adiposity and sex hormones on LINE-1 and Alu methylation in healthy postmenopausal women. METHODS: A cross-sectional study was conducted using baseline data from an ancillary study of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. Current adiposity was measured using a dual-energy x-ray absorptiometry (DXA) scan, computed tomography (CT) scan, and balance beam scale. Historical weights were self-reported in a questionnaire. Current endogenous sex hormone concentrations were measured in fasting blood serum. Estimated lifetime number of menstrual cycles was used as a proxy for cumulative exposure to ovarian sex hormones. Repetitive element methylation was quantified in white blood cells using a pyrosequencing assay. Linear regression was used to model the relations of interest while adjusting for important confounders. RESULTS: Adiposity and serum estrogen concentrations were positively related to LINE-1 methylation but were not associated with Alu methylation. Cumulative ovarian sex hormone exposure had a “U-shaped” relation with LINE-1 regardless of folate intake and a negative relation with Alu methylation amongst low folate consumers. Androgens were not associated with repetitive element DNA methylation in this population. CONCLUSION: Adiposity and estrogens appear to play a role in maintaining high levels of repetitive element DNA methylation in healthy postmenopausal women. LINE-1 methylation may be a mechanism whereby estrogen exposure protects against cardiovascular and neurodegenerative illnesses. These results add to the growing body of literature showing how the epigenome is shaped by our lifestyle choices. Future prospective studies assessing the relation between levels of repetitive element DNA methylation in healthy individuals and subsequent disease risk are needed to better understand the clinical significance of these results.