MIMU sensors for joint kinematic estimation: anatomical landmarking and frame correction


Autoria(s): Rogers, Jonathan
Contribuinte(s)

Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))

Data(s)

27/07/2016

02/08/2016

08/08/2016

09/08/2016

09/08/2016

09/08/2016

Resumo

The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.

Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-08-08 12:53:07.45

Identificador

http://hdl.handle.net/1974/14705

Idioma(s)

en

en

Relação

Canadian theses

Direitos

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada

ProQuest PhD and Master's Theses International Dissemination Agreement

Intellectual Property Guidelines at Queen's University

Copying and Preserving Your Thesis

Creative Commons - Attribution - CC BY

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Palavras-Chave #Optical Motion Capture #Joint Kinematics #Inertial Motion Capture #Biomechanics #Mechanical Engineering #Anatomical Landmarking
Tipo

Thesis