Adiposity, Sex Hormones, and Repetitive Element DNA Methylation in Healthy Postmenopausal Women
Contribuinte(s) |
Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
---|---|
Data(s) |
03/08/2016
08/08/2016
09/08/2016
09/08/2016
|
Resumo |
INTRODUCTION: Low levels of methylation within repetitive DNA elements, such as long interspersed nuclear element-1 (LINE-1) and Alu repeats, are believed to epigenetically predispose an individual to cancer and other diseases. The extent to which lifestyle factors affect the degree of DNA methylation within these genomic regions has yet to be fully understood. Adiposity and sex hormones are established risk factors for certain types of cancer and other illnesses, particularly amongst postmenopausal women. The aim of the current investigation is to assess the impact of adiposity and sex hormones on LINE-1 and Alu methylation in healthy postmenopausal women. METHODS: A cross-sectional study was conducted using baseline data from an ancillary study of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. Current adiposity was measured using a dual-energy x-ray absorptiometry (DXA) scan, computed tomography (CT) scan, and balance beam scale. Historical weights were self-reported in a questionnaire. Current endogenous sex hormone concentrations were measured in fasting blood serum. Estimated lifetime number of menstrual cycles was used as a proxy for cumulative exposure to ovarian sex hormones. Repetitive element methylation was quantified in white blood cells using a pyrosequencing assay. Linear regression was used to model the relations of interest while adjusting for important confounders. RESULTS: Adiposity and serum estrogen concentrations were positively related to LINE-1 methylation but were not associated with Alu methylation. Cumulative ovarian sex hormone exposure had a “U-shaped” relation with LINE-1 regardless of folate intake and a negative relation with Alu methylation amongst low folate consumers. Androgens were not associated with repetitive element DNA methylation in this population. CONCLUSION: Adiposity and estrogens appear to play a role in maintaining high levels of repetitive element DNA methylation in healthy postmenopausal women. LINE-1 methylation may be a mechanism whereby estrogen exposure protects against cardiovascular and neurodegenerative illnesses. These results add to the growing body of literature showing how the epigenome is shaped by our lifestyle choices. Future prospective studies assessing the relation between levels of repetitive element DNA methylation in healthy individuals and subsequent disease risk are needed to better understand the clinical significance of these results. Thesis (Master, Community Health & Epidemiology) -- Queen's University, 2016-08-08 12:12:30.315 |
Identificador | |
Idioma(s) |
en en |
Relação |
Canadian theses |
Direitos |
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada ProQuest PhD and Master's Theses International Dissemination Agreement Intellectual Property Guidelines at Queen's University Copying and Preserving Your Thesis Creative Commons - Attribution - CC BY This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Palavras-Chave | #Epidmiology #Epigenetics #Sex Hormones #Adiposity |
Tipo |
Thesis |