964 resultados para Kerouartz, Alain de
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
Current estimates of soil C storage potential are based on models or factors that assume linearity between C input levels and C stocks at steady-state, implying that SOC stocks could increase without limit as C input levels increase. However, some soils show little or no increase in steady-state SOC stock with increasing C input levels suggesting that SOC can become saturated with respect to C input. We used long-term field experiment data to assess alternative hypotheses of soil carbon storage by three simple models: a linear model (no saturation), a one-pool whole-soil C saturation model, and a two-pool mixed model with C saturation of a single C pool, but not the whole soil. The one-pool C saturation model best fit the combined data from 14 sites, four individual sites were best-fit with the linear model, and no sites were best fit by the mixed model. These results indicate that existing agricultural field experiments generally have too small a range in C input levels to show saturation behavior, and verify the accepted linear relationship between soil C and C input used to model SOM dynamics. However, all sites combined and the site with the widest range in C input levels were best fit with the C-saturation model. Nevertheless, the same site produced distinct effective stabilization capacity curves rather than an absolute C saturation level. We conclude that the saturation of soil C does occur and therefore the greatest efficiency in soil C sequestration will be in soils further from C saturation.
Resumo:
Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.
Resumo:
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.
Resumo:
The literature was reviewed and analyzed to determine the feasibility of using a combination of acid hydrolysis and CO2-C release during long-term incubation to determine soil organic carbon (SOC) pool sizes and mean residence times (MRTs). Analysis of 1100 data points showed the SOC remaining after hydrolysis with 6 M HCI ranged from 30 to 80% of the total SOC depending on soil type, depth, texture, and management. Nonhydrolyzable carbon (NHC) in conventional till soils represented 48% of SOC; no-till averaged 56%, forest 55%, and grassland 56%. Carbon dates showed an average of 1200 yr greater MRT for the NHC fraction than total SOC. Longterm incubation, involving measurement of CO2 evolution and curve fitting, measured active and slow pools. Active-pool C comprised 2 to 8% of the SOC with MRTs of days to months; the slow pool comprised 45 to 65% of the SOC and had MRTs of 10 to 80 yr. Comparison of field C-14 and (13) C data with hydrolysis-incubation data showed a high correlation between independent techniques across soil types and experiments. There were large differences in MRTs depending on the length of the experiment. Insertion of hydrolysis-incubation derived estimates of active (C-a), slow (C-s), and resistant Pools (C-r) into the DAYCENT model provided estimates of daily field CO2 evolution rates. These were well correlated with field CO2 measurements. Although not without some interpretation problems, acid hydrolysis-laboratory incubation is useful for determining SOC pools and fluxes especially when used in combination with associated measurements.
Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions
Resumo:
Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.
Resumo:
A constraints- based framework for understanding processes of movement coordination and control is predicated on a range of theoretical ideas including the work of Bernstein (1967), Gibson (1979), Newell (1986) and Kugler, Kelso & Turvey (1982). Contrary to a normative perspective that focuses on the production of idealized movement patterns to be acquired by children during development and learning (see Alain & Brisson, 1986), this approach formulates the emergence of movement co- ordination as a function of the constraints imposed upon each individual. In this framework, cognitive, perceptual and movement difficulties and disorders are considered to be constraints on the perceptual- motor system, and children’s movements are viewed as emergent functional adaptations to these constraints (Davids et al., 2008; Rosengren, Savelsbergh & van der Kamp, 2003). From this perspective, variability of movement behaviour is not viewed as noise or error to be eradicated during development, but rather, as essentially functional in facilitating the child to satisfy the unique constraints which impinge on his/her developing perceptual- motor and cognitive systems in everyday life (Davids et al., 2008). Recently, it has been reported that functional neurobiological variability is predicated on system degeneracy, an inherent feature of neurobiological systems which facilitates the achievement of task performance goals in a variety of different ways (Glazier & Davids, 2009). Degeneracy refers to the capacity of structurally different components of complex movement systems to achieve different performance outcomes in varying contexts (Tononi et al., 1999; Edelman & Gally, 2001). System degeneracy allows individuals with and without movement disorders to achieve their movement goals by harnessing movement variability during performance. Based on this idea, perceptual- motor disorders can be simply viewed as unique structural and functional system constraints which individuals have to satisfy in interactions with their environments. The aim of this chapter is to elucidate how the interaction of structural and functional organismic, and environmental constraints can be harnessed in a nonlinear pedagogy by individuals with movement disorders.
Resumo:
The uncertainty associated with how projected climate change will affect global C cycling could have a large impact on predictions of soil C stocks. The purpose of our study was to determine how various soil decomposition and chemistry characteristics relate to soil organic matter (SOM) temperature sensitivity. We accomplished this objective using long-term soil incubations at three temperatures (15, 25, and 35°C) and pyrolysis molecular beam mass spectrometry (py-MBMS) on 12 soils from 6 sites along a mean annual temperature (MAT) gradient (2–25.6°C). The Q10 values calculated from the CO2 respired during a long-term incubation using the Q10-q method showed decomposition of the more resistant fraction to be more temperature sensitive with a Q10-q of 1.95 ± 0.08 for the labile fraction and a Q10-q of 3.33 ± 0.04 for the more resistant fraction. We compared the fit of soil respiration data using a two-pool model (active and slow) with first-order kinetics with a three-pool model and found that the two and three-pool models statistically fit the data equally well. The three-pool model changed the size and rate constant for the more resistant pool. The size of the active pool in these soils, calculated using the two-pool model, increased with incubation temperature and ranged from 0.1 to 14.0% of initial soil organic C. Sites with an intermediate MAT and lowest C/N ratio had the largest active pool. Pyrolysis molecular beam mass spectrometry showed declines in carbohydrates with conversion from grassland to wheat cultivation and a greater amount of protected carbohydrates in allophanic soils which may have lead to differences found between the total amount of CO2 respired, the size of the active pool, and the Q10-q values of the soils.
Resumo:
IEEE 802.11p is the new standard for inter-vehicular communications (IVC) using the 5.9 GHz frequency band; it is planned to be widely deployed to enable cooperative systems. 802.11p uses and performance have been studied theoretically and in simulations over the past years. Unfortunately, many of these results have not been confirmed by on-tracks experimentation. In this paper, we describe field trials of 802.11p technology with our test vehicles. Metrics such as maximum range, latency and frame loss are examined.
Resumo:
This thesis explores Raphael Rubinstein’s notion of provisionality as detailed in his influential article from 2009, Provisional Painting and his subsequent exhibition of the same name from 2011. Rubenstein’s writing is discussed in relation to modern art’s rhetoric around the many ‘deaths’ or ‘ends’ of painting as a contemporary art‐making medium, particularly in reference to Yve‐Alain Bois’ 1986 article, Painting: the task of mourning. While Rubenstein predominantly views the provisional via an abstract lens, it is through the work of Sigmar Polke and then Luc Tuymans, Peter Doig and Daniel Richter, that I build an argument to include the work of contemporary representational painters within his notion of provisionality. These new ideas of provisionality are then examined in the context of my recent paintings, which are viewed as contemporary examples of provisionality extended into the representational.
Resumo:
A year ago, I became aware of the historical existence of the group CERFI— Le centre d’etudes, de recherches, et de formation institutionelles, or The Study Center for Institutional Research and Formation. CERFI emerged in 1967 under the hand of Lacanian psychiatrist and Trotskyite activist Félix Guattari, whose antonymous journal Recherches chronicled the group’s subversive experiences, experiments, and government-sponsored urban projects. It was a singularly bizarre meeting of the French bureaucracy with militant activist groups, the French intelligentsia, and architectural and planning practitioners at the close of the ‘60s. Nevertheless, CERFI’s analysis of the problems of society was undertaken precisely from the perspective of the state, and the Institute acknowledged a “deep complicity between the intellectual and statesman ... because the first critics of the State, are officials themselves!”1 CERFI developed out of FGERI (The Federation of Groups for Institutional Study and Research), started by Guattari two years earlier. While FGERI was created for the analysis of mental institutions stemming from Guattari’s work at La Borde, an experimental psychiatric clinic, CERFI marks the group’s shift toward urbanism—to the interrogation of the city itself. Not only a platform for radical debate on architecture and the city, CERFI was a direct agent in the development of urban planning schemata for new towns in France. 2 CERFI’s founding members were Guattari, the economist and urban theorist François Fourquet, feminist philosopher Liane Mozère, and urban planner and editor of Multitides Anne Querrien—Guattari’s close friend and collaborator. The architects Antoine Grumback, Alain Fabre, Macary, and Janine Joutel were also members, as well as urbanists Bruno Fortier, Rainier Hoddé, and Christian de Portzamparc. 3 CERFI was the quintessential social project of post-‘68 French urbanism. Located on the Far Left and openly opposed to the Communist Party, this Trotskyist cooperative was able to achieve what other institutions, according to Fourquet, with their “customary devices—the politburo, central committee, and the basic cells—had failed to do.”4 The decentralized institute recognized that any formal integration of the group was to “sign its own death warrant; so it embraced a skein of directors, entangled, forming knots, liquidating all at once, and spinning in an unknown direction, stopping short and returning back to another node.” Allergic to the very idea of “party,” CERFI was a creative project of free, hybrid-aesthetic blocs talking and acting together, whose goal was none other than the “transformation of the libidinal economy of the militant revolutionary.” The group believed that by recognizing and affirming a “group unconscious,” as well as their individual unconscious desires, they would be able to avoid the political stalemates and splinter groups of the traditional Left. CERFI thus situated itself “on the side of psychosis”—its confessed goal was to serve rather than repress the utter madness of the urban malaise, because it was only from this mad perspective on the ground that a properly social discourse on the city could be forged.
Resumo:
Simulation has been widely used to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new architecture built with the SiVIC simulator and the RTMaps™ multisensors prototyping platform. We introduce several improvements from a previous similar architecture, regarding IVC modelisation and vehicles’ control. It has been tuned with on-road measurements to improve fidelity. We discuss the results of a freeway emergency braking scenario (EEBL) implemented to validate our architecture’s capabilities.
Resumo:
I grew up in academic heaven. At least for me it was. Not only was Sweden in the late 1980s paradise for any kind of empirical research, with rich and high-quality business statistics being made available to researchers without them having to sign away their lives; 70+ percent response rates achieved in mail surveys to almost any group (if you knew how to do them), and boards of directors opening their doors to more qualitatively orientated researchers to sit in during their meetings. In addition, I perceived an environment with a very high degree of academic freedom, letting me do whatever I found interesting and important. I’m sure for others it was sheer hell, with very unclear career paths and rules of the game. Career progression (something which rarely entered my mind) meant that you tried as best you could and then you put all your work – reports, books, book chapters, conference papers, maybe even published articles – in a box and had some external committee of professors look at it. If you were lucky they liked what they saw for whatever reasons their professorial wisdom dictated, and you got hired or promoted. If you were not so lucky you wouldn’t get the job or the promotion, without quite knowing why. So people could easily imagine an old boys club – whose members were themselves largely unproven in international, peer review publishing – picking whoever they wanted by whatever criteria they choose to apply. Neither the fact that assessors were external nor the presence of an appeals system might have completely appeased your suspicious and skeptical mind, considering the balance of power.
Resumo:
Process improvement has become a number one business priority, and more and more project requests are raised in organizations, seeking approval and resources for process-related projects. Realistically, the total of the requested funds exceeds the allocated budget, the number of projects is higher than the available bandwidth, and only some of these (very often only few) can be supported and most never see any light. Relevant resources are scarce, and correct decisions must be made to make sure that those projects that are of best value are implemented. How can decision makers make the right decision on the following: Which project(s) are to be approved and when to commence work on them? Which projects are most aligned with corporate strategy? How can the project’s value to the business be calculated and explained? How can these decisions be made in a fair, justifiable manner that brings the best results to the company and its stakeholders? This chapter describes a business value scoring (BVS) model that was built, tested, and implemented by a leading financial institution in Australia to address these very questions. The chapter discusses the background and motivations for such an initiative and describes the tool in detail. All components and underlying concepts are explained, together with details on its application. This tool has been successfully implemented in the case organization. The chapter provides practical guidelines for organizations that wish to adopt this approach.