851 resultados para Interfaces de computador
Resumo:
We present a novel framework and algorithms for the analysis of Web service interfaces to improve the efficiency of application integration in wide-spanning business networks. Our approach addresses the notorious issue of large and overloaded operational signatures, which are becoming increasingly prevalent on the Internet and being opened up for third-party service aggregation. Extending upon existing techniques used to refactor service interfaces based on derived artefacts of applications, namely business entities, we propose heuristics for deriving relations between business entities, and in turn, deriving permissible orders in which operations are invoked. As a result, service operations are refactored on business entity CRUD which then leads to behavioural protocols generated, thus supportive of fine-grained and flexible service discovery, composition and interaction. A prototypical implementation and analysis of web services, including those of commercial logistic systems (Fedex), are used to validate the algorithms and open up further insights into service interface synthesis.
Resumo:
The growth of APIs and Web services on the Internet, especially through larger enterprise systems increasingly being leveraged for Cloud and software-as-a-service opportuni- ties, poses challenges to improving the efficiency of integration with these services. Interfaces of enterprise systems are typically larger, more complex and overloaded, with single operation having multiple data entities and parameter sets, supporting varying requests, and reflecting versioning across different system releases, compared to fine-grained operations of contemporary interfaces. We propose a technique to support the refactoring of service interfaces by deriving business entities and their relationships. In this paper, we focus on the behavioural aspects of service interfaces, aiming to discover the sequential dependencies of operations (otherwise known as protocol extraction) based on the entities and relationships derived. Specifically, we propose heuristics according to these relationships, and in turn, deriving permissible orders in which operations are invoked. As a result of this, service operations can be refactored on business entity CRUD lines, with explicit behavioural protocols as part of an interface definition. This supports flexible service discovery, composition and integration. A prototypical implementation and analysis of existing Web services, including those of commercial logistic systems (Fedex), are used to validate the algorithms proposed through the paper.
Resumo:
Reuse of existing carefully designed and tested software improves the quality of new software systems and reduces their development costs. Object-oriented frameworks provide an established means for software reuse on the levels of both architectural design and concrete implementation. Unfortunately, due to frame-works complexity that typically results from their flexibility and overall abstract nature, there are severe problems in using frameworks. Patterns are generally accepted as a convenient way of documenting frameworks and their reuse interfaces. In this thesis it is argued, however, that mere static documentation is not enough to solve the problems related to framework usage. Instead, proper interactive assistance tools are needed in order to enable system-atic framework-based software production. This thesis shows how patterns that document a framework s reuse interface can be represented as dependency graphs, and how dynamic lists of programming tasks can be generated from those graphs to assist the process of using a framework to build an application. This approach to framework specialization combines the ideas of framework cookbooks and task-oriented user interfaces. Tasks provide assistance in (1) cre-ating new code that complies with the framework reuse interface specification, (2) assuring the consistency between existing code and the specification, and (3) adjusting existing code to meet the terms of the specification. Besides illustrating how task-orientation can be applied in the context of using frameworks, this thesis describes a systematic methodology for modeling any framework reuse interface in terms of software patterns based on dependency graphs. The methodology shows how framework-specific reuse interface specifi-cations can be derived from a library of existing reusable pattern hierarchies. Since the methodology focuses on reusing patterns, it also alleviates the recog-nized problem of framework reuse interface specification becoming complicated and unmanageable for frameworks of realistic size. The ideas and methods proposed in this thesis have been tested through imple-menting a framework specialization tool called JavaFrames. JavaFrames uses role-based patterns that specify a reuse interface of a framework to guide frame-work specialization in a task-oriented manner. This thesis reports the results of cases studies in which JavaFrames and the hierarchical framework reuse inter-face modeling methodology were applied to the Struts web application frame-work and the JHotDraw drawing editor framework.
Resumo:
We describe the design of a digital noticeboard to support communication within a remote Aboriginal community whose aspiration is to live in "both worlds", nurturing and extending their Aboriginal culture and actively participating in Western society and economy. Three bi-cultural aspects have emerged and are presented here: the need for a bi-lingual noticeboard to span both oral and written language traditions, the tension between perfunctory information exchange and social, embodied protocols of telling in person and the different ways in which time is represented in both cultures. The design approach, developed iteratively through consultation, demonstration and testing led to an "unsurprising interface", aimed at maximizing use and appropriation across cultures by unifying visual, text and spoken contents in both passive and interactive displays in a modeless manner.
Resumo:
Natural User Interfaces (NUI) offer rich ways for interacting with the digital world that make innovative use of existing human capabilities. They include and often combine different input modalities such as voice, gesture, eye gaze, body interactions, touch and touchless interactions. However much of the focus of NUI research and development has been on enhancing the experience of individuals interacting with technology. Effective NUIs must also acknowledge our innately social characteristics, and support how we communicate with each other, play together, learn together and collaboratively work together. This workshop concerns the social aspects of NUI. The workshop seeks to better understand the social uses and applications of these new NUI technologies -- how we design these technologies for new social practices and how we understand the use of these technologies in key social contexts.
Resumo:
Network Interfaces (NIs) are used in Multiprocessor System-on-Chips (MPSoCs) to connect CPUs to a packet switched Network-on-Chip. In this work we introduce a new NI architecture for our hierarchical CoreVA-MPSoC. The CoreVA-MPSoC targets streaming applications in embedded systems. The main contribution of this paper is a system-level analysis of different NI configurations, considering both software and hardware costs for NoC communication. Different configurations of the NI are compared using a benchmark suite of 10 streaming applications. The best performing NI configuration shows an average speedup of 20 for a CoreVA-MPSoC with 32 CPUs compared to a single CPU. Furthermore, we present physical implementation results using a 28 nm FD-SOI standard cell technology. A hierarchical MPSoC with 8 CPU clusters and 4 CPUs in each cluster running at 800MHz requires an area of 4.56mm2.
Resumo:
A number of methods exist that use different approaches to assess geometric properties like the surface complementarity and atom packing at the protein-protein interface. We have developed two new and conceptually different measures using the Delaunay tessellation and interface slice selection to compute the surface complementarity and atom packing at the protein-protein interface in a straightforward manner. Our measures show a strong correlation among themselves and with other existing measures, and can be calculated in a highly time-efficient manner. The measures are discriminative for evaluating biological, as well as non-biological protein-protein contacts, especially from large protein complexes and large-scale structural studies(http://pallab.serc. iisc.ernet.in/nip_nsc). (C) 201 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Hydrophobins are a group of particularly surface active proteins. The surface activity is demonstrated in the ready adsorption of hydrophobins to hydrophobic/hydrophilic interfaces such as the air/water interface. Adsorbed hydrophobins self-assemble into ordered films, lower the surface tension of water, and stabilize air bubbles and foams. Hydrophobin proteins originate from filamentous fungi. In the fungi the adsorbed hydrophobin films enable the growth of fungal aerial structures, form protective coatings and mediate the attachment of fungi to solid surfaces. This thesis focuses on hydrophobins HFBI, HFBII, and HFBIII from a rot fungus Trichoderma reesei. The self-assembled hydrophobin films were studied both at the air/water interface and on a solid substrate. In particular, using grazing-incidence x-ray diffraction and reflectivity, it was possible to characterize the hydrophobin films directly at the air/water interface. The in situ experiments yielded information on the arrangement of the protein molecules in the films. All the T. reesei hydrophobins were shown to self-assemble into highly crystalline, hexagonally ordered rafts. The thicknesses of these two-dimensional protein crystals were below 30 Å. Similar films were also obtained on silicon substrates. The adsorption of the proteins is likely to be driven by the hydrophobic effect, but the self-assembly into ordered films involves also specific protein-protein interactions. The protein-protein interactions lead to differences in the arrangement of the molecules in the HFBI, HFBII, and HFBIII protein films, as seen in the grazing-incidence x-ray diffraction data. The protein-protein interactions were further probed in solution using small-angle x-ray scattering. Both HFBI and HFBII were shown to form mainly tetramers in aqueous solution. By modifying the solution conditions and thereby the interactions, it was shown that the association was due to the hydrophobic effect. The stable tetrameric assemblies could tolerate heating and changes in pH. The stability of the structure facilitates the persistence of these secreted proteins in the soil.
Resumo:
Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.
Resumo:
Herein are reported the results of an investigation on the effective angle of interfacial friction between fine-grained soils and solid surfaces as influenced by the roughness of the material surface, the soil type and the overconsolidation ratio. The ratio of interfacial friction angle to the angle of internal friction (evaluated at constant overconsolidation ratio) of the soil is independent of the overconsolidation ratio. An empirical correlation between this ratio and the roughness of the interface has been proposed.
Resumo:
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
Resumo:
The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The equivalent circuit parameters for a pentacene organic field-effect transistor are determined from low frequency impedance measurements in the dark as well as under light illumination. The source-drain channel impedance parameters are obtained from Bode plot analysis and the deviations at low frequency are mainly due to the contact impedance. The charge accumulation at organic semiconductor-metal interface and dielectric-semiconductor interface is monitored from the response to light as an additional parameter to find out the contributions arising from photovoltaic and photoconductive effects. The shift in threshold voltage is due to the accumulation of photogenerated carriers under source-drain electrodes and at dielectric-semiconductor interface, and also this dominates the carrier transport. The charge carrier trapping at various interfaces and in the semiconductor is estimated from the dc and ac impedance measurements under illumination. (c) 2010 American Institute of Physics. doi: 10.1063/1.3517085]
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.