81 resultados para Injecção de grouts
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2013
Resumo:
Doutoramento em Ciências Empresariais.
Resumo:
The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing
Resumo:
This research investigates the implementation of battery-less RFID sensing platforms inside lossy media, such as, concrete and grout. Both concrete and novel grouts can be used for nuclear plant decommissioning as part of the U.S. Department of Energy’s (DOE’s) cleanup projects. Our research examines the following: (1) material characterization, (2) analytical modeling of transmission and propagation losses inside lossy media, (3) maximum operational range of RFID wireless sensors embedded inside concrete and grout, and (4) best positioning of antennas for achieving longer communication range between RFID antennas and wireless sensors. Our research uses the battery-less Wireless Identification and Sensing Platform (WISP) which can be used to monitor temperature, and humidity inside complex materials. By using a commercial Agilent open-ended coaxial probe (HP8570B), the measurements of the dielectric permittivity of concrete and grout are performed. Subsequently, the measured complex permittivity is used to formulate analytical Debye models. Also, the transmission and propagation losses of a uniform plane wave inside grout are calculated. Our results show that wireless sensors will perform better in concrete than grout. In addition, the maximum axial and radial ranges for WISP are experimentally determined. Our work illustrates the feasibility of battery-less wireless sensors that are embedded inside concrete and grout. Also, our work provides information that can be used to optimize the power management, sampling rate, and antenna design of such sensors.
Resumo:
A ocorrência e destino de fármacos no ambiente aquático tem vindo a ser reconhecido como um problema emergente em química ambiental. Alguns compostos são resistentes à degradação nas estações de tratamento de águas residuais, ETARs, enquanto que outros, ainda que sofram degradação parcial, continuam a ser lançados nos meios aquáticos em quantidades apreciáveis. O Ibuprofeno, IB, um dos anti inflamatórios mais consumidos por todo o mundo, é um dos fármacos mais detectados no meio hídrico. Apesar dos sistemas de tratamento convencionais utilizados nas ETARs removerem até 90% do IB das águas residuais, é frequente o efluente descarregado conter ainda quantidades significativas deste poluente. A presença destes compostos no ambiente deve ser avaliada dado que possuem actividade biológica, mesmo a baixas concentrações. Os processos avançados de oxidação com peróxido de hidrogénio, na presença de catalisadores heterogéneos, permitem melhorar significativamente a remoção deste tipo de compostos em águas. Assim, foi objectivo deste trabalho o estudo da utilização de peróxido de hidrogénio como agente oxidante na remoção de IB em soluções aquosas, na presença de complexo de acetilacetonato de Ni (II) disperso em PDMS ou encapsulado em zeólitos NaY. Para o doseamento do fármaco em solução foi necessário desenvolver um método analítico consistindo de separação cromatográfica por HPLC e detecção e quantificação por UV-Vis. Não houve necessidade de recorrer a um passo de pré concentração de amostras por extracção em fase sólida (SPE) devido ao facto das concentrações de IB medidas ao longo do trabalho se terem sempre encontrado acima do LOQ (811 g L-1) do método analítico por injecção directa. Deste estudo pode concluir-se que o catalisador que apresentou melhor actividade catalítica e consequentemente maior remoção do IB em solução, foi o complexo de acetilacetonato de Ni (II), disperso em PDMS. Foi avaliada a influência, na conversão do IB, de diferentes parâmetros como a concentração inicial de peróxido de hidrogénio adicionada, quantidade de catalisador utilizada na mistura reaccional e temperatura. Os resultados permitiram concluir que os aumentos destes parâmetros conduzem a um aumento da actividade catalítica da reacção. A estabilidade catalítica do acetilacetonato de Ni (II)/PDMS, foi avaliada em ensaios consecutivos com a mesma amostra e nas mesmas condições, tendo-se observado que, após 8 utilizações, o catalisador perde ligeiramente a actividade (cerca de 11% do seu valor inicial). ABSTRACT: The presence and fate of pharmaceuticals in the aquatic environment is an emergent issue in environmental chemistry. Some compounds are poorly removed in wastewater treatment plants (WWTPs) while others, in spite of being partially removed, are still present in the WWTPs effluents and discharged in the receiving water bodies. Ibuprofen, IB, a non-steroid anti-inflammatory drug, is one of the most used and also one of the most frequently detected pharmaceutical contaminants in aquifers worldwide. Its removal by conventional wastewater treatment processes used in most WWTPs is usually high (up to 90% of incoming IB may be removed), but duet the high loads present in the influents, still significant amounts of IB usually leave the WWTPs in the treated effluents. The presence of these compounds in the environment must be evaluated considering that they may have some biological activity even at low concentrations. Advanced oxidation processes using hydrogen peroxide, in the presence of heterogeneous catalysts, provide a significantly improved removal of this type of substances from waters. Therefore, it was the aim of this work to study the use of hydrogen peroxide as an oxidizing agent in the removal of IB from aqueous solutions, in the presence of the catalyst nickel (II) acetylacetonate dispersed in PDMS or encapsulated in the NaY zeolite. For the quantification of the pharmaceutical in aqueous solution it was necessary to develop an analytical methodology based in chromatographic separation by HPLC and with UV-Vis detection and quantification. There was no need for a preconcentration step of the samples by solid phase extraction (SPE) as the IB concentrations measured were always above the limit of quantification (811 bL1 of) the analytical method. The results from this study have shown that the catalyst which presented the best catalytic activity and the highest IB removal in solution was nickel (II) acetylacetonate dispersed in PDMS.
Resumo:
In the early twentieth century, musicology was established as an academic discipline in the United States. Nonetheless, with the exception of Iberian medieval and Renaissance repertories, U.S. scholars largely overlooked the music of the Spanish- and Portuguese- speaking world. Why should this have been the case, especially in light of Spain’s strong historical presence in the United States? This autobiographical essay examines this question by tracing the career of an individual musicologist, the Hispanist musicologist Carol A. Hess. Evaluated here are disciplinary shifts in U.S. musicology —methodological, philosophical, and ideological— over the past thirty years. These transformations have combined to make this repertory a viable field of study today. Musicologists in the United States can now make their careers by specializing in Iberian and Latin American music, as well as the music of the Hispanic diaspora. They research topics ranging from the avant-garde composer Llorenç Barber to the rapper Nach Scratch or the popular bandleader Xavier Cugat and his U.S. audiences of the 1940s, while others also pursue the time-tested areas of medieval and Renaissance music. Iberian and Latin American music is regularly offered in postsecondary institutions while instructors now have a variety of textbooks and other pedagogical resources from which to choose. All add up to a disciplinary freedom that would have been unthinkable only a few decades ago.