591 resultados para Inferência bayesiana
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Long-term survival models have historically been considered for analyzing time-to-event data with long-term survivors fraction. However, situations in which a fraction (1 - p) of systems is subject to failure from independent competing causes of failure, while the remaining proportion p is cured or has not presented the event of interest during the time period of the study, have not been fully considered in the literature. In order to accommodate such situations, we present in this paper a new long-term survival model. Maximum likelihood estimation procedure is discussed as well as interval estimation and hypothesis tests. A real dataset illustrates the methodology.
Resumo:
We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.
Resumo:
In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.
Resumo:
Este trabalho aborda o problema de previsão para séries de vazões médias mensais, no qual denomina-se de horizonte de previsão (h), o intervalo de tempo que separa a última observação usada no ajuste do modelo de previsão e o valor futuro a ser previsto. A análise do erro de previsão é feita em função deste horizonte de previsão. Estas séries possuem um comportamento periódico na média, na variância e na função de autocorrelação. Portanto, considera-se a abordagem amplamente usada para a modelagem destas séries que consiste inicialmente em remover a periodicidade na média e na variância das séries de vazões e em seguida calcular uma série padronizada para a qual são ajustados modelos estocásticos. Neste estudo considera-se para a série padronizada os modelos autorregressivos periódicos PAR (p m). As ordens p m dos modelos ajustados para cada mês são determinadas usando os seguintes critérios: a análise clássica da função de autocorrelação parcial periódica (FACPPe); usando-se o Bayesian Information Criterion (BIC) proposto em (MecLeod, 1994); e com a análise da FACPPe proposta em (Stedinger, 2001). Os erros de previsão são calculados, na escala original da série de vazão, em função dos parâmetros dos modelos ajustados e avaliados para horizontes de previsão h variando de 1 a 12 meses. Estes erros são comparados com as estimativas das variâncias das vazões para o mês que está sendo previsto. Como resultado tem-se uma avaliação da capacidade de previsão, em meses, dos modelos ajustados para cada mês.
Resumo:
Neste trabalho propomos o uso de um método Bayesiano para estimar o parâmetro de memória de um processo estocástico com memória longa quando sua função de verossimilhança é intratável ou não está disponível. Esta abordagem fornece uma aproximação para a distribuição a posteriori sobre a memória e outros parâmetros e é baseada numa aplicação simples do método conhecido como computação Bayesiana aproximada (ABC). Alguns estimadores populares para o parâmetro de memória serão revisados e comparados com esta abordagem. O emprego de nossa proposta viabiliza a solução de problemas complexos sob o ponto de vista Bayesiano e, embora aproximativa, possui um desempenho muito satisfatório quando comparada com métodos clássicos.
Resumo:
The multivariate t models are symmetric and with heavier tail than the normal distribution, important feature in financial data. In this theses is presented the Bayesian estimation of a dynamic factor model, where the factors follow a multivariate autoregressive model, using multivariate t distribution. Since the multivariate t distribution is complex, it was represented in this work as a mix between a multivariate normal distribution and a square root of a chi-square distribution. This method allowed to define the posteriors. The inference on the parameters was made taking a sample of the posterior distribution, through the Gibbs Sampler. The convergence was verified through graphical analysis and the convergence tests Geweke (1992) and Raftery & Lewis (1992a). The method was applied in simulated data and in the indexes of the major stock exchanges in the world.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Mapas Conceituais são representações gráficas do conhecimento de uma pessoa num dado momento e área de conhecimento. Por sua natureza investigativa, são utilizados como ferramentas de apoio em abordagens pedagógicas que objetivam promover a aprendizagem significativa. No entanto, o processo de avaliação de um mapa tende a ser custoso pois acarreta uma pesada carga de processamento cognitivo por parte do avaliador, já que este precisa mapear os conceitos e relações em busca de nuances de conhecimento alí presentes. Essa pesquisa tem por objetivo aumentar o nível de abstração nas interações entre o avaliador e os mapas conceituais fornecendo uma camada intermediária de inteligência computacional que favoreça a comunicação por meio de perguntas e respostas em linguagem natural, fornecendo ao avaliador ferramentas que lhe permita examinar o conteúdo do mapa conceitual sem exigir deste o mapeamento visual dos conceitos e relações presentes nos mapas avaliados. Uma ferramenta é prototipada e uma prova de conceito apresentada. A análise da arquitetura proposta permitiu definir uma arquitetura final com características que permitem potencializar o uso de mapas conceituais e facilitar diversas operações pedagógicas com estes. Essa pesquisa situa-se na área de investigação de sistemas de perguntas e resposta, aplicando técnicas de processamento de linguagem natural para análise da pergunta e interpretação do mapa conceitual e aplica técnica de inteligência artificial para inferir respostas às perguntas.
Resumo:
Os administradores brasileiros revelam muitas vezes ter dúvidas sobre fatores importantes que determinam o sucesso de uma estratégia de estipulação de preço. Quando o nível de incerteza é grande e suas origens são numerosas, problemas de precificação aparentemente singelos podem rapidamente tornar-se inadministráveis. O objetivo deste artigo é descrever e analisar um método, denominado análise bayesiana, para lidar com essa complexidade. Com o uso deste procedimento, facilita-se a compreensão de problemas complexos e possibilita-se aos administradores melhorar suas decisões de fixação de preços.