Análise do erro de previsão de vazões mensais com diferentes horizontes de previsão
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
04/11/2013
04/11/2013
2012
|
Resumo |
Este trabalho aborda o problema de previsão para séries de vazões médias mensais, no qual denomina-se de horizonte de previsão (h), o intervalo de tempo que separa a última observação usada no ajuste do modelo de previsão e o valor futuro a ser previsto. A análise do erro de previsão é feita em função deste horizonte de previsão. Estas séries possuem um comportamento periódico na média, na variância e na função de autocorrelação. Portanto, considera-se a abordagem amplamente usada para a modelagem destas séries que consiste inicialmente em remover a periodicidade na média e na variância das séries de vazões e em seguida calcular uma série padronizada para a qual são ajustados modelos estocásticos. Neste estudo considera-se para a série padronizada os modelos autorregressivos periódicos PAR (p m). As ordens p m dos modelos ajustados para cada mês são determinadas usando os seguintes critérios: a análise clássica da função de autocorrelação parcial periódica (FACPPe); usando-se o Bayesian Information Criterion (BIC) proposto em (MecLeod, 1994); e com a análise da FACPPe proposta em (Stedinger, 2001). Os erros de previsão são calculados, na escala original da série de vazão, em função dos parâmetros dos modelos ajustados e avaliados para horizontes de previsão h variando de 1 a 12 meses. Estes erros são comparados com as estimativas das variâncias das vazões para o mês que está sendo previsto. Como resultado tem-se uma avaliação da capacidade de previsão, em meses, dos modelos ajustados para cada mês. |
Identificador |
SBA : Controle and Automação, Campinas, v. 23, n. 3, p. 294-305, 2012 0103-1759 http://www.producao.usp.br/handle/BDPI/39093 10.1590/S0103-17592012000300004 |
Idioma(s) |
por |
Publicador |
Sociedade Brasileira de Automática |
Relação |
Sba: Controle and Automação Sociedade Brasileira de Automática |
Direitos |
openAccess |
Palavras-Chave | #Modelo PAR #previsão de vazão #erro de previsão #sistemas hidrelétricos #PAR model #streamflow forecasting #forecast error #hydroelectric systems #INFERÊNCIA BAYESIANA #INFERÊNCIA ESTATÍSTICA #PROCESSOS ESTOCÁSTICOS #ANÁLISE DE SÉRIES TEMPORAIS |
Tipo |
article original article |