912 resultados para Images - Computational methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications does not dispense with the high resistance of the blocks, but has the purpose of reducing costs with finishing, therefore preferring exposed blocks with a closer texture. Furthermore, a closer texture, especially for exteriors,may be the vital factor of the building's pathology.However, there is so far no standard to quantify the texture of a structural block. This article proposes to apply the freely available UTHSCSA-Image ToolTM program developed by the University of Texas Health Science Center at San Antonio to evaluate the texture of masonry blocks. One aspect that should never be overlooked when studying masonry blocks is compressive strength. Therefore, this work also gets the compressive strength of the blocks with and without the addition of lime. The addition of small quantities of lime proved beneficial for both texture and compressive strength. However, increasing the amount of lime proved to be feasible only to improve texture. © 2012 Taylor & Francis Group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on literature review, electronic systems design employ largely top-down methodology. The top-down methodology is vital for success in the synthesis and implementation of electronic systems. In this context, this paper presents a new computational tool, named BD2XML, to support electronic systems design. From a block diagram system of mixed-signal is generated object code in XML markup language. XML language is interesting because it has great flexibility and readability. The BD2XML was developed with object-oriented paradigm. It was used the AD7528 converter modeled in MATLAB / Simulink as a case study. The MATLAB / Simulink was chosen as a target due to its wide dissemination in academia and industry. From this case study it is possible to demonstrate the functionality of the BD2XML and make it a reflection on the design challenges. Therefore, an automatic tool for electronic systems design reduces the time and costs of the design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the efficacy of minutia-based fingerprint matching techniques for good-quality images captured by optical sensors, minutia-based techniques do not often perform so well on poor-quality images or fingerprint images captured by small solid-state sensors. Solid-state fingerprint sensors are being increasingly deployed in a wide range of applications for user authentication purposes. Therefore, it is necessary to develop new fingerprint-matching techniques that utilize other features to deal with fingerprint images captured by solid-state sensors. This paper presents a new fingerprint matching technique based on fingerprint ridge features. This technique was assessed on the MSU-VERIDICOM database, which consists of fingerprint impressions obtained from 160 users (4 impressions per finger) using a solid-state sensor. The combination of ridge-based matching scores computed by the proposed ridge-based technique with minutia-based matching scores leads to a reduction of the false non-match rate by approximately 1.7% at a false match rate of 0.1%. © 2005 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans webcite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the work was to explore the practical applicability of molecular dynamics at different length and time scales. From nanoparticles system over colloids and polymers to biological systems like membranes and finally living cells, a broad range of materials was considered from a theoretical standpoint. In this dissertation five chemistry-related problem are addressed by means of theoretical and computational methods. The main results can be outlined as follows. (1) A systematic study of the effect of the concentration, chain length, and charge of surfactants on fullerene aggregation is presented. The long-discussed problem of the location of C60 in micelles was addressed and fullerenes were found in the hydrophobic region of the micelles. (2) The interactions between graphene sheet of increasing size and phospholipid membrane are quantitatively investigated. (3) A model was proposed to study structure, stability, and dynamics of MoS2, a material well-known for its tribological properties. The telescopic movement of nested nanotubes and the sliding of MoS2 layers is simulated. (4) A mathematical model to gain understaning of the coupled diffusion-swelling process in poly(lactic-co-glycolic acid), PLGA, was proposed. (5) A soft matter cell model is developed to explore the interaction of living cell with artificial surfaces. The effect of the surface properties on the adhesion dynamics of cells are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Methodology: Recently, a computational approach was used to successfully design peptides that are new lead compounds against breast cancer. We used replica exchange molecular dynamics to predict the structure and dynamics of active peptides, leading to the discovery of smaller bioactive peptides. Conclusions: These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used along with the experimental information that led to the successful completion of this research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Collision-induced dissociation (CID) of peptides using tandem mass spectrometry (MS) has been used to determine the identity of peptides and other large biological molecules. Mass spectrometry (MS) is a useful tool for determining the identity of molecules based on their interaction with electromagnetic fields. If coupled with another method like infrared (IR) vibrational spectroscopy, MS can provide structural information, but in its own right, MS can only provide the mass-to-charge (m/z) ratio of the fragments produced, which may not be enough information to determine the mechanism of the collision-induced dissociation (CID) of the molecule. In this case, theoretical calculations provide a useful companion for MS data and yield clues about the energetics of the dissociation. In this study, negative ion electrospray tandem MS was used to study the CID of the deprotonated dipeptide glycine-serine (Gly-Ser). Though negative ion MS is not as popular a choice as positive ion MS, studies by Bowie et al. show that it yields unique clues about molecular structure which complement positive ion spectroscopy, such as characteristic fragmentations like the loss of formaldehyde from the serine residue.2 The increase in the collision energy in the mass spectrometer alters the flexibility of the dipeptide backbone, enabling isomerizations (reactions not resulting in a fragment loss) and dissociations to take place. The mechanism of the CID of Gly-Ser was studied using two computational methods, B3LYP/6-311+G* and M06-2X/6-311++G**. The main pathway for molecular dissociation was analyzed in 5 conformers in an attempt to verify the initial mechanism proposed by Dr. James Swan after examination of the MS data. The results suggest that the loss of formaldehyde from serine, which Bowie et al. indicates is a characteristic of the presence of serine in a protein residue, is an endothermic reaction that is made possible by the conversion of the translational energy of the ion into internal energy as the ion collides with the inert collision gas. It has also been determined that the M06-2X functional¿s improved description of medium and long-range correlation makes it more effective than the B3LYP functional at finding elusive transition states. M06-2X also more accurately predicts the energy of those transition states than does B3LYP. A second CID mechanism, which passes through intermediates with the same m/z ratio as the main pathway for molecular dissociation, but different structures, including a diketopiperazine intermediate, was also studied. This pathway for molecular dissociation was analyzed with 3 conformers and the M06-2X functional, due to its previously determined effectiveness. The results suggest that the latter pathway, which meets the same intermediate masses as the first mechanism, is lower in overall energy and therefore a more likely pathway of dissociation than the first mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intraneural Ganglion Cyst is a 200 year old mystery related to nerve injury which is yet to be solved. Current treatments for the above problem are relatively simple procedures related to removal of cystic contents from the nerve. However, these treatments may result into neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) takes into consideration the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and affirms that in addition to the above treatments, ligation of articular branch results into foolproof eradication of the deficit. Mechanical Modeling of the Affected Nerve Cross Section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in this Master’s Thesis are effective enough to be able to simulate such deformations. The results obtained from the model adequately resemble the MRI image obtained at the same location and shows an appearance of a signet ring. This Master’s Thesis describes the neurological deficit in brief followed by detail explanation of the advanced computational methods used to simulate this problem. Finally, qualitative results show the resemblance of mechanical model to MRI images of the Nerve Cross Section at the same location validating the capability of these methods to study this neurological deficit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.