338 resultados para HDFS bottleneck
Resumo:
In some fishes, water chemistry or temperature affects sex determination or creates sex-specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long-term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life-stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (N(e) ). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura.
Resumo:
Validation is the main bottleneck preventing theadoption of many medical image processing algorithms inthe clinical practice. In the classical approach,a-posteriori analysis is performed based on someobjective metrics. In this work, a different approachbased on Petri Nets (PN) is proposed. The basic ideaconsists in predicting the accuracy that will result froma given processing based on the characterization of thesources of inaccuracy of the system. Here we propose aproof of concept in the scenario of a diffusion imaginganalysis pipeline. A PN is built after the detection ofthe possible sources of inaccuracy. By integrating thefirst qualitative insights based on the PN withquantitative measures, it is possible to optimize the PNitself, to predict the inaccuracy of the system in adifferent setting. Results show that the proposed modelprovides a good prediction performance and suggests theoptimal processing approach.
Resumo:
Process variations are a major bottleneck for digital CMOS integrated circuits manufacturability and yield. That iswhy regular techniques with different degrees of regularity are emerging as possible solutions. Our proposal is a new regular layout design technique called Via-Configurable Transistors Array (VCTA) that pushes to the limit circuit layout regularity for devices and interconnects in order to maximize regularity benefits. VCTA is predicted to perform worse than the Standard Cell approach designs for a certain technology node but it will allow the use of a future technology on an earlier time. Ourobjective is to optimize VCTA for it to be comparable to the Standard Cell design in an older technology. Simulations for the first unoptimized version of our VCTA of delay and energy consumption for a Full Adder circuit in the 90 nm technology node are presented and also the extrapolation for Carry-RippleAdders from 4 bits to 64 bits.
Resumo:
Tässä työssä simuloitiin Valkealassa sijaitsevaa Tirvan pienvesivoimalaitosta ja sen vaikutusta sähkönjakeluverkkoon. Pienvesivoimalaitos mallinnettiin PSCAD-ympäristöön verkko- ja voimalaitostietojen perusteella. Sähköverkko kuvattiin malliin koko 110 kV:n siirtävän verkon ja Tirvan pienjänniteverkon väliltä. Mallin avulla tehtiin sarja hajautettua sähköntuotantoa koskevia tarkasteluita. Tarkasteluissa huomattiin voimalaitoksen verkkoonliitynnän aiheuttavan standardien ylärajoilla olevan transienttisen muutoksen voimalaitoksen jännitteisiin. Työssä tehtiin yksityiskohtaisempi jännitehäviöiden mittaus voimalaitoksen pullonkaulana toimivalle pienitehoiselle jakelumuuntajalle. Tuotannon lisäämisen yhteydessä näkyvän yllättävän jännitteen laskun syyt paikannettiin muuntajalla tapahtuviin loistehon siirrosta johtuviin ylimääräisiin jännitehäviöihin. Voimalaitoksella ei ole merkittävää vaikutusta vikatilanteiden virtoihin.
Resumo:
Tämän diplomityön tavoitteena on selvittää kirjallisuuden avulla, mitä on lean-tuotanto ja implementoida lean-tuotantoon liittyviä tuotannon kehitysmenetelmiä. Työn aikana suunniteltiin lean-menetelmien avulla tuotantoa kehittäviä toimenpiteitä ja implementoitiin muutamia näistä. Näitä muutosten aiheuttamia seurauksia arvioitiin ja seurattiin. Lisäksi muutosten implementointia varten koulutettiin operaattoreita. Pääpaino on lean-menetelmiin tutustumisessa, pullonkaulan purkamisessa, pullonkaulakoneen asetuksen lyhentämisessä ja näiden vaikutusten tarkastelussa arvovirtakuvauksen ja asiakaskysynnän tahtiaikaan perustuen.
Resumo:
This thesis investigates the strategy implementation process of enterprices; a process whichhas lacked the academic attentioon compared with a rich strategy formation research trdition. Strategy implementation is viewed as a process ensuring tha the strtegies of an organisation are realised fully and quickly, yet with constant consideration of changing circumstances. The aim of this sudy is to provide a framework for identifying, analysing and removing the strategy implementation bottleneck af an organization and thus for intesifying its strategy process.The study is opened by specifying the concept, tasks and key actors of strategy implementation process; especially arguments for the critical implementation role of the top management are provided. In order to facilitate the analysis nad synthetisation of the core findings of scattered doctrine, six characteristic approaches to strategy implementation phenomenon are identified and compared. The Bottleneck Framework is introduced as an instrument for arranging potential strategy realisation problems, prioritising an organisation's implementation obstacles and focusing the improvement measures accordingly. The SUCCESS Framework is introduced as a mnemonic of the seven critical factors to be taken into account when promoting sttrategy implementation. Both frameworks are empirically tested by applying them to real strategy implementation intesification process in an international, industrial, group-structured case enterprise.
Resumo:
Es va realitzar una sèrie d'assaigs d'adobat nitrogenat en diferents comarques de la Catalunya interior. En el conjunt d'aquests assaigs es varen comprovar tres mètodes diferents que es va considerar que eren prometedors per tal de millorar la fertilització nitrogenada. Els mètodes assajats eren el mètode del balanç de nitrogen, el del nitrogen mineral i el del contingut de nitrats al suc de la base de les tiges (CNSBT). Els sòls on es van realitzar els assaigs no presentaven cap limitació especial per al cultiu del blat i eren profunds, ben drenats, no salins i de textura mitjana; l'única excepció era un assaig sobre sòl moderadament profund. Per tant, i també pel que fa a la fertilitat química, els sòls s'han de considerar d'un potencial productiu mitjàalt. El mètode del balanç de nitrogen s'ha mostrat com a molt prometedor de cara a definir si cal la magnitud de l'adobat de cobertora per a les condicions estudiades. El mètode de nitrogen mineral també ha estat efectiu en aquest sentit, mentre que el del CNSBT s'ha revelat com a no aplicable en les condicions assajades, on en molts casos l'aigua és també factor limitant. Al llarg dels assaigs s'han identificat un seguit de factors que impedeixen ajustar la fertilitat nitrogenada. Entre aquests cal esmentar la mala estimació de la producció objectiu, la dificultat de predir el N disponible a partir dels adobs orgànics, dificultats de mostreig pel nitrogen nítric i l'efecte crític que té l'erràtica disponibilitat d'aigua que complica molt l'estratègia de fertilització nitrogenada a adoptar.
Resumo:
Diplomityön tarkoituksena oli kehittää ja yksinkertaistaa tuotannonohjausta. Teoriaosassa selvitettiin erilaisia tuotannonohjaustekniikoita sekä vertailtiin niitä toisiinsa. Käytännön osassa perehdyttiin ensin toimitusajan varmistamisen ja tuotannonsuunnittelun rutiineihin. Niitä analysoimalla etsittiin kehityskohteita. Toimitusvarmuutta analysoimalla löydettiin järjestelmän kapeikko. Läpäisyaikoja analysoimalla tutustuttiin kuinka toimitusvastaavien tuotannon kuormittamisen erot vaikuttavat läpäisyaikoihin. ABC-analyysillä löydettiin meisto- ja pinnoitusosastoa kuormittavimmat puolivalmisteet. Järjestelmän pullonkaulana on pintakäsittely ja liikkuvana pullonkaulana meisto. Kehityskohteita arvioitiin kriittisten menestystekijöiden perusteella. Kehitettävien kohteiden lopullinen valinta tehtiin yhdessä työn ohjausryhmän kanssa. Kiireisimmät kehityskohteet olivat uuden tuotannonohjausmallin rakentaminen, tuotteiden ja puolivalmisteiden jakaminen eri ohjaustavoille, Excel-taulukoiden käytön laajentaminen ja monipuolistaminen sekä tuotannon osittainen visualisointi. Näiden toteuttaminen aloitettiin työn aikana ja sitä tullaan vielä jatkamaan.
Resumo:
Työn tavoitteena oli kuvata piirilevyvalmistaja Aspocomp Oy:n Espoon tehtaan tämän hetkinen tuotannonohjausperiaate ja tunnistaa siinä esiintyvät puutteet sekä kehittää vaihtoehtoinen tuotannonohjausperiaate piirilevyvalmistukseen. Vaihtoehtoisen ohjausperiaatteen lähtökohtana oli tuotannonohjauksen sopeuttaminen vaativaan ja jatkuvasti muuttuvaan liiketoimintaympäristöön. Työn teoreettinen osa keskittyi tuotannonohjauksen eri lähestymistapoihin. Kirjallisuuskatsauksessa esitetään eri tuotannonohjausperiaatteiden keskeiset sisällöt, jotka muodostavat rungon toimivalle tuotannonohjauskäytännölle. Työn kokeellinen osa keskittyi Espoon piirilevytehtaan tuotannonohjausperiaatteen selvittämiseen. Espoon piirilevytehtaan nykyisessä tuotannonohjausperiaatteessa havaittujen ongelmakohtien ja liiketoimintaympäristön vaatimusten perusteella kehitettiin vaihtoehtoinen tuotannonohjaustapa. Vaihtoehtoisen tuotannonohjaustavan päämääränä oli läpimenoajan lyhentäminen sekä tuotannon parempi hallittavuus. Vaihtoehtoinen toimintamalli tavoitteiden saavuttamiseksi perustuu pullonkaulateoriaan, jossa keskeisin muutos nykyiseen toimintamalliin oli puolivalmisteiden varastointi toimitusajan lyhentämiseksi sekä tuotantovolyymin heilahdusten vaikutusten vähentämiseksi. Työn kokeellisessa osassa ilmeni, että kysynnän muutokset ja kapasiteetin suunnittelun puute aiheuttivat ongelmia piirilevytehtaan tuotannonohjauksessa.
Resumo:
Drying is a major step in the manufacturing process in pharmaceutical industries, and the selection of dryer and operating conditions are sometimes a bottleneck. In spite of difficulties, the bottlenecks are taken care of with utmost care due to good manufacturing practices (GMP) and industries' image in the global market. The purpose of this work is to research the use of existing knowledge for the selection of dryer and its operating conditions for drying of pharmaceutical materials with the help of methods like case-based reasoning and decision trees to reduce time and expenditure for research. The work consisted of two major parts as follows: Literature survey on the theories of spray dying, case-based reasoning and decision trees; working part includes data acquisition and testing of the models based on existing and upgraded data. Testing resulted in a combination of two models, case-based reasoning and decision trees, leading to more specific results when compared to conventional methods.
Resumo:
AimHigh intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses. LocationThe circumpolar Arctic and northern temperate alpine ranges. MethodsWe estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits. ResultsWe found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation. Main conclusionThe relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000km(-1). In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here.
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.
Resumo:
Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.