994 resultados para Graphics calculators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to present evidence of the ways in which different media have conditioned and dramatically reorganized education, in general, and mathematics education, in particular. After an introduction of the theme, we discuss the epistemological perspective that provides the foundation for our analysis: the notion of humans-with-media. Then, we briefly illustrate how the medium is related to the scientific production of mathematical knowledge. We take a detour into the world of art to examine how devices and instruments have historically been associated with the production of mathematical knowledge. Then, we review studies on the history of education to show how traditional media were introduced into schools and have influenced education. In particular, we examine how devices such as blackboards and notebooks, which were novelties a 100 years ago, came to be accepted in schools and the mathematical activities that were promoted with their use. Finally, we discuss how information technology has changed education and how the Internet may have an impact on mathematics education comparable to that of the notebook over a century ago. © FIZ Karlsruhe 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to describe the basic concepts and necessary for Java programs can invoke libraries of programming language C/C ++, through the JNA API. We used a library developed in C/C ++ called Glass [8], which offers a solution for viewing 3D graphics, using graphics clusters, reducing the cost of viewing. The purpose of the work is to interact with the humanoid developed using Java, which makes movements of LIBRAS language for the deaf, as Glass's, so that through this they can view the information using stereoscopic multi-view in full size. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this action research study of my classroom of eighth grade mathematics, I investigated the use of calculators. Specifically, I wanted to know the answer to three questions. I wanted to know more about what would happen to my students’ ability to recall basic math facts, their ability to communicate mathematically during problem solving, and their attitude when my students were or were not permitted to use their calculator. I discovered that in my research, I did not find enough evidence to either support or reject my initial hypotheses, that calculators largely influenced my students’ behavior, and also that my students’ ability to recall basic math facts would change when using a calculator. As a result of this research, I plan to continue my research within my classroom. I plan to further investigate the use of calculators within my classroom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a world where technology is ever present and ever changing, is too much technology at too young of an age detrimental to a child’s educational success? The purpose of this paper is to share the results of a four-month study that focused on the use of calculators in grade eight. This study was conducted in an eighth grade class, in a small kindergarten through twelfth grade school. This paper will share the findings of a study of a classroom in which calculator use was limited and mental computation was emphasized. The main focus of this study was whether or not there would be any improvement in the computation skills of my students and how, or if, their problem solving would be affected. As a result of this research project, I plan to permanently limit calculator use in grades seven and eight, as well as to implement a computational review that will be conducted yearly with all of my classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embry-Riddle Aeronautical University (Prescott, AZ, USA) was awarded a grant from the William J. Hughes FAA Technical Center in October 1999 to develop and maintain a web site dealing with a wide variety of airport safety wildlife concerns. Initially, the web site enabled users to access related topics such as wildlife management (at/near airports), bird identification information, FAA wildlife management guidelines, education, pictures, current news, upcoming meetings and training, available jobs and discussion/forum sections. In April 2001, the web site was augmented with an on-line wildlife strike report (FAA Form 5200-7). Upon submittal on-line, “quick look” email notifications are sent to concerned government personnel. The distribution of these emails varies as to whether there was damage, human injuries/fatalities, and whether feather remains were collected and will be sent to the Smithsonian Institution for identification. In July 2002, a real-time on-line query system was incorporated to allow federal and local government agencies, airport and operator personnel, and USDA and airport wildlife biologists to access this database (which as of June 2005 contains 68,288 researched strike reports added to at a rate of approximately 500 strike reports/month) to formulate strategies to reduce the hazards wildlife present to aviation. To date (June 2005), over 15,000 on-line real-time queries were processed. In June 2004, ERAU was authorized to develop a graphical interface to this on-line query system. Current capabilities include mapping strikes (by species) on the US map, each of the contiguous 48 state maps (with AK and HI being added), and airport diagrams of the major metropolitan airports as well as the next 46 airports with the most reported strikes The latter capability depicts strikes by runway in plan as well as in elevation view. Currently under development is the ability to view time-sequenced strikes on the US map. This extensive graphical interface will give analysts the ability to view strike patterns with a wide variety of variables including species, seasons, migration patterns, etc. on US and state maps and airport diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'obiettivo della tesi è individuare gli strumenti più indicati per scrivere un documento a carattere tecnico-scientifico e creare la relativa presentazione multimediale. La scelta degli strumenti è il risultato di un’analisi delle problematiche specifiche. Tuttavia è impossibile fare delle considerazione relativamente a questi strumenti senza averli mai usati in pratica. E' stato quindi scelto un argomento tecnico scientifico come esempio: I quaternioni nella Computher Grafica. L'argomento è stato esposto in una breve dispensa scritta con LaTeX. Nella dispensa sono state inserite diverse immagini generate con Inkscape. La presentazione multimediale è stata realizzata con PowerPoint. Dopo una breve descrizione di ogni programma segue l’esposizione di come essi rispondano alle particolari esigenze di stesura di una presentazione scientifica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in derrnfreien Energie überwinden um einen Tropfen der stabilen Phase zu formen.rnHerkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. Inrnanisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-rnbracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems starkrnauf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb derrnAufrauungstemperatur T R schwächer. Das Ising-Modell ist ein einfaches Mo-rndell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-rnulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-rnhergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. DasrnAusmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-rnduzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogrammsrnfür das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.rnGrafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-rnstrakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-rndetails verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-rnfläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-rnfläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durchrnein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-rnchung ab, welche das Verhalten der freien Energie der Oberfläche in einemrnanisotropen System beschreibt. Kombiniert mit thermodynamischer Integrationrnkann die Gleichung benutzt werden, um die anisotrope Oberflächenspannungrnüber einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-rnsungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-rnstimung und Genauigkeit, welche vor allem durch die im Vergleich zu früherenrnMessungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-rnaturabhängigkeit der Oberflächensteifheit κ wird oberhalb von T R durch diernKrümmung der freien Energie der Oberfläche für kleine Winkel gemessen. DiesernMessung lässt sich mit Simulationsergebnissen in der Literatur vergleichen undrnhat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-rnverhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell fürrndas Verhalten um Θ = 90 Grad weit unterhalb von T R. Der Winkel bleibt bis zu einemrnkritischen Feld H C quasi null; oberhalb des kritischen Feldes steigt der Winkelrnrapide an. H C wird mit der freien Energie einer Stufe in Verbindung gebracht,rnwas es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harternWand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-rnergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag derrnKontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-rnyse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wirdrneine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.rnbenutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-rnplementieren einen parallelen Evolution Galerkin Operator und erreichen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves) and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.