986 resultados para Generalized function
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (AGPC) algorithm can be speeded up using parallel processing. Since the AGPC algorithm needs to be fed with the knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (GPC) algorithm can be speeded up using parallel processing. Since the GPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ulcerative colitis (UC) is characterized by impairment of the epithelial barrier and the formation of ulcer-type lesions, which result in local leaks and generalized alterations of mucosal tight junctions. Ultimately, this results in increased basal permeability. Although disruption of the epithelial barrier in the gut is a hallmark of inflammatory bowel disease and intestinal infections, it remains unclear whether barrier breakdown is an initiating event of UC or rather a consequence of an underlying inflammation, evidenced by increased production of proinflammatory cytokines. UC is less common in smokers, suggesting that the nicotine in cigarettes may ameliorate disease severity. The mechanism behind this therapeutic effect is still not fully understood, and indeed it remains unclear if nicotine is the true protective agent in cigarettes. Nicotine is metabolized in the body into a variety of metabolites and can also be degraded to form various breakdown products. It is possible these metabolites or degradation products may be the true protective or curative agents. A greater understanding of the pharmacodynamics and kinetics of nicotine in relation to the immune system and enhanced knowledge of out permeability defects in UC are required to establish the exact protective nature of nicotine and its metabolites in UC. This review suggests possible hypotheses for the protective mechanism of nicotine in UC, highlighting the relationship between gut permeability and inflammation, and indicates where in the pathogenesis of the disease nicotine may mediate its effect.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.