939 resultados para GRAPHITE
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaqa) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(NO3)(2). Pyrolysis and atomization temperature curves were established in a cachaqa medium (1+1; v/v) containing 0.2% (v/v) HNO3 and spiked with 20 mu g L-1 As and Pb and 200 mu g L-1 Cu. The effect of the concentration of major elements usually present in cachaqa matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 mu g L-1 As, 9.2 mu g L-1 Cu, and 0.3 pig L-1 Pb. The found concentrations varied from 0.81 to 4.28 mu g L-1 As, 0.28 to 3.82 mg L-1 Cu and 0.82 to 518 mu g L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 mu g L-1, 0.81 mg L-1, and 38.9 mu g L-1 concentrations.
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The characteristics, performance, and application of an electrode, namely Pt| Hg|Hg-2(DCF)(2)|graphite, where DCF stands for diclofenac ion, are described. This electrode responds to diclofenac with sensitivity of (58.1 +/- 0.8) mV/decade over the range 5.0 x 10(-5) to 1.0 x 10(-2) Mol l(-1) at pH 6.5-9.0 and a detection limit of 3.2 x 10(-5) mol l(-1). The electrode is easily constructed at a relatively low cost with fast response time (within 10-30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for diclofenac in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used to determine diclofenac in pharmaceutical preparations by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.
Resumo:
Arsenic and germanium have been evaluated as internal standards to minimize matrix effects on the direct determination of selenium in milk by graphite furnace atomic absorption spectrometry (GFAAS) using tubes with integrated platform, pre-treated with W together with I'd as chemical modifier. The efficiency of As and Ge as internal standards for 25 mu g L-1 Se plus 500 mu g (L)-1 As or Ge in diluted (1 + 9 v/v) milk plus 1.0% (v/v) HNO3 was evaluated by means of correlation graphs plotted from the normalized absorbance signals (n = 20) of internal standard (axis gamma) versus analyte (axis x). The equations that describe the linear regression were: A(As)= - 0.004 +/- 0.019 +/- 1.02 + 0.019 A(Se) (r=0.9967 +/- 0.005); A(Ge)= - 0.0 17 +/- 0.015 + 1.01 +/- 0.015 A(Se) (r = 0.9978 +/- 0.004). Samples and reference solutions were automatically spiked with 500 mu g L-1 Ge or As and 1.0% (v/v) HNO3 by the autosampler. For 20 mu L of aqueous standard solutions, analytical curves in the 5.00-40.0 mu g L-1 Se range were established using the ratio of Se absorbance to internal standard absorbance (A(Se)A(IS)) versus analyte concentration, and good linear correlations were obtained. The characteristic mass was 40 pg Se. Limits of detection were 0.55 and 0.40 mu g L-1 with As and Ge as the internal standard, respectively. Relative standard deviations (RSD) for a sample containing 25 mu g L-1 Se were 1.2% and 1.0% (n = 12) using As and Ge, respectively. The RSD without internal standardization was about 6%. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 99-105% range with IS and in the 70-80% range without IS. Using Ge as the internal standard, results of analysis of standard reference materials were in agreement with certified values at a 95% confidence level. The selenium concentration for 10 analyzed milk samples varied from 5.0 to 20 mu g L-1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The corrosion resistance of resin bonded alumina/magnesia/graphite refractories containing different kinds of aggregates were investigated when submitted to the action of slags of several CaO/SiO2 ratios. The laboratory testing was performed by means of the rotary slag attack test. Specifically evaluated was the influence of alumina/carbon ratio and magnesia and silica contents on the refractories corrosion resistance. It was found that this property could be improved by increasing the refractory Al2O3/SiO2 ratio as well as by choosing the appropriate Al2O3/C ratio. © 2000 Elsevier Science Ltd.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
Iron nitroprusside Fe(II)NP was incorporated into a carbon paste electrode and the electrochemical studies were performed with cyclic voltammetry. The cyclic voltammogram of Fe(II)NP exhibits two redox couple with formal potential (E0')1 = 0.24 e (E0')2 = 0.85 V vs SCE attributed to Fe(II)/Fe(II) and Fe (II)(CN)5NO/Fe(III)(CN)5NO, respectively. The redox couple with (E0')2 = 0.85 V presents an electrocatalytic response for sulfhydryl compounds. The electrocatalytic oxidation of sulfhydryl compounds by the mediator has been used for the determination of L-cysteine and N-acetylcysteine. The modified graphite paste electrode gives a linear range from 9.2 x 10-4-2.0 x 10-2;; 9.6 x 10-4-1.4 x 10-2mol L-1 for the determination of L-cysteine and N-acetylcysteine, respectively, with detection limit of 1.9 x 10-4 mol L-1;; 1.5 x 10 -4 mol L-1 and relative standard desviations ± 5% and 1.5 x 10-3 mol L-1 ± 4% (n=3). The amperometric sensitivities are 0.024 and 0.027 μA/μmol L-1 for L-cysteine and N-acetylcysteine, respectively. The application of this electrode was tested and a commercial pharmaceutical product (Fluimucil) has been determined.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO 3) 2/Mg(NO 3) 2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l -1 As and 0.2% (v/v) HNO 3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l -1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%. © 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates corrosion behavior in graphite refractory hot metal impregnated with ZrO 2 and CeO 2 carrying solutions used in Blast Furnace hearth, consisting of 50% graphite and 50% anthracite. Corrosions tests were carried out by means of finger test method in an induction furnace, using bar-shaped 30×30×280 mm test specimens and hot metal from CSN#2 Blast Furnace runner. The temperature chosen for this test was 1520°C and sixty-minute isotherm. Upon test completion, test specimens were characterized by their dimensional variation, X-ray diffractometry and Scanning Electronic Microscopy (SEM).
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg 2(NAP) 2| Graphite, where NAP stands for naproxenate ion, are described. This electrode responds to NAP with sensivity of (58.1± 0.9) mV decade -1 over the range 5.0 × 10 -5 - 1.0 × 10 -2 mol L -1 at pH 6.0-9.0 and a detection limit of 3.9 × 10 -5 mol L -1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-35 s) and can be used for a period of 6 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for naproxen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of naproxen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure. ©2006 Sociedade Brasileira de Química.
Resumo:
In the work described in the present paper, an analytical solution of the general heat conduction equation was employed to assay the temperature profile inside a solid slab which is initially at room temperature and is suddenly plunged into a fluid maintained at a high temperature. The results were then extrapolated to a simulation of a hot modulus of rupture test of typical MgO-graphite refractory samples containing different amounts of graphite in order to evaluate how fast the temperature equilibrates inside the test specimens. Calculations indicated that, depending on the graphite content, the time to full temperature homogenization was in the range of 80 to 200 s. These findings are relevant to the high temperature testing of such refractories in oxidizing conditions in view of the graphite oxidation risks in the proper evaluation of the hot mechanical properties.