986 resultados para GALLIUM ANTIMONIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase transformation and subdomain structure in [0001]-oriented gallium nitride (GaN) nanorods of different sizes are studied using molecular dynamics simulations. The analysis concerns the structure of GaN nanorods at 300 K without external loading. Calculations show that a transformation from wurtzite to a tetragonal structure occurs along {0110} lateral surfaces, leading to the formation of a six-sided columnar inversion domain boundary (IDB) in the [0001] direction of the nanorods. This structural configuration is similar to the IDB structure observed experimentally in GaN epitaxial layers. The transformation is significantly dependent on the size of the nanorods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure synthesis of garnet Gd3In2Ga3O12 is reported. It was found that the pressure-temperature region for the synthesis of Gd3In2Ga3O12 can be expressed as T(degrees C) < 2350-250P(GPa), and high pressure greatly reduced the reaction time. It was also found that the garnet Gd3In2Ga3O12 decomposed to GdGaO3 and In2O3 under 3.5 GPa and 1650 degrees C, and this process was accompanied by an increasing density of the products and an increasing coordination number for Ga3+ (4 to 6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La0.15Sr0.85Ga0.3Fe0.7O3-delta (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-delta (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H-2-TPR, O-2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H-2 in Ar from 20 degreesC to 1020 degreesC, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ . mol(-1), respectively The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD covers the development of planar inversion-mode and junctionless Al2O3/In0.53Ga0.47As metal-oxidesemiconductor field-effect transistors (MOSFETs). An implant activation anneal was developed for the formation of the source and drain (S/D) of the inversionmode MOSFET. Fabricated inversion-mode devices were used as test vehicles to investigate the impact of forming gas annealing (FGA) on device performance. Following FGA, the devices exhibited a subthreshold swing (SS) of 150mV/dec., an ION/IOFF of 104 and the transconductance, drive current and peak effective mobility increased by 29%, 25% and 15%, respectively. An alternative technique, based on the fitting of the measured full-gate capacitance vs gate voltage using a selfconsistent Poisson-Schrödinger solver, was developed to extract the trap energy profile across the full In0.53Ga0.47As bandgap and beyond. A multi-frequency inversion-charge pumping approach was proposed to (1) study the traps located at energy levels aligned with the In0.53Ga0.47As conduction band and (2) separate the trapped charge and mobile charge contributions. The analysis revealed an effective mobility (μeff) peaking at ~2850cm2/V.s for an inversion-charge density (Ninv) = 7*1011cm2 and rapidly decreasing to ~600cm2/V.s for Ninv = 1*1013 cm2, consistent with a μeff limited by surface roughness scattering. Atomic force microscopy measurements confirmed a large surface roughness of 1.95±0.28nm on the In0.53Ga0.47As channel caused by the S/D activation anneal. In order to circumvent the issue relative to S/D formation, a junctionless In0.53Ga0.47As device was developed. A digital etch was used to thin the In0.53Ga0.47As channel and investigate the impact of channel thickness (tInGaAs) on device performance. Scaling of the SS with tInGaAs was observed for tInGaAs going from 24 to 16nm, yielding a SS of 115mV/dec. for tInGaAs = 16nm. Flat-band μeff values of 2130 and 1975cm2/V.s were extracted on devices with tInGaAs of 24 and 20nm, respectively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 70% of nosocomial infections in the United States are resistant to one or more traditional antibiotics, necessitating research for alternative treatment options. This study aims to chelate gallium (Ga) onto a bacterial siderophore, desferrioxamine (DFO), to retard bacterial growth. By exploiting natural bacterial pathways, metal-siderophore treatments are hypothesized to circumvent traditional resistance mechanisms. Additionally, the GaDFO complex will be tested against several bacterial species to determine the specificity of DFO uptake. This research aims to prove the feasibility of siderophore piracy as an alternative to antibiotics. In showing the feasibility of siderophore piracy mechanisms, this research will enable the development of future avenues for protecting against resistant nosocomial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A realistic model of the dipole radiation forces in transverse Doppler cooling (with a s+-s- laser configuration) of an atomic beam of group 13 elements is studied within the quantum-kinetic equation framework. The full energy level sub-structure for such an atom with I = 0 (such as 66Ga) is analysed. Two cooling strategies are investigated; the first involving the 2P3/2 ? 2D5/2 transition and the second a dual laser cooling experiment involving transitions 2P1/2 and 2P3/2 ? 2S1/2. The latter scheme creates a velocity-independent dark-state resonance that inhibits a steady-state dipole cooling force. However, time-dependent calculations show that transient cooling forces are present that could be exploited for laser cooling purposes in pulsed laser fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of ionic liquids was prepared by mixing 1-alkyl-3-methylimidazolium chloride with gallium(III) chloride or indium(III) chloride in various ratios, producing both acidic and basic compositions. Their speciation was investigated using Ga-71 NMR or In-115 NMR spectroscopy, as well as extended X-ray absorption fine structure. Polynuclear Lewis acidic anions, [MxCl3x+1](-), were found in chlorogallate(III) ionic liquids, but not in chloroindate(III) systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of p-block elements. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark states are studied in the gallium isotope 66Ga.