887 resultados para Frontal cortex
Resumo:
Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.
Resumo:
It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.
Resumo:
The extensive clinical experience of angiotensin converting enzyme inhibitors and angiotensin AT(1) receptor antagonists as antihypertensive agents provide numerous examples of anecdotal evidence of improvements in cognition and mood. This study aimed to determine the effect of chronic treatment with the angiotensin converting enzyme inhibitor, perindopril, and the angiotensin AT(1) receptor antagonist, candesartan, on central neurotransmitter levels in the rat. Perindopril (1.0mg/kg/day) or candesartan (10mg/kg/day) was administered via the drinking water at for 1 week, while controls received water alone. At the end of treatment rats were sacrificed, brains removed and discrete regions dissected and analysed for noradrenaline, dopamine and its major metabolites, and serotonin content. As shown previously we found an increase in striatal dopamine levels after perindopril treatment, though this did not extend to the mesolimbic system with neurotransmitter levels unchanged in the hippocampus, nucleus accumbens and frontal cortex. Conversely, candesartan administration produced no change in dopamine, but significant decreases in both DOPAC and HVA in the striatum. In addition chronic candesartan infusion produced a significant increase in the levels of hippocampal noradrenaline and serotonin; and frontal cortex serotonin content. These results demonstrate that while angiotensin converting enzyme inhibitors and angiotensin AT(1) receptor antagonists act as antihypertensives by affecting the renin-angiotensin system, they have divergent actions on brain neurochemistry.
Resumo:
Response time (RT) variability is a common finding in ADHD research. RT variability may reflect frontal cortex function and may be related to deficits in sustained attention. The existence of a sustained attention deficit in ADHD has been debated, largely because of inconsistent evidence of time-on-task effects. A fixed-sequence Sustained Attention to Response Task (SART) was given to 29 control, 39 unimpaired and 24 impaired-ADHD children (impairment defined by the number of commission errors). The response time data were analysed using the Fast Fourier Transform, to define the fast-frequency and slow-frequency contributions to overall response variability. The impaired-ADHD group progressively slowed in RT over the course of the 5.5 min task, as reflected in this group's greater slow-frequency variability. The fast-frequency trial-to-trial variability was also significantly greater, but did not differentially worsen over the course of the task. The higher error rates of the impaired-ADHD group did not become differentially greater over the length of the task. The progressive slowing in mean RT over the course of the task may relate to a deficit in arousal in the impaired-ADHD group. The consistently poor performance in fast-frequency variability and error rates may be due to difficulties in sustained attention that fluctuate on a trial-to-trial basis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Although much is now known about eye movement detection, little is known about the higher cognitive processes involved in joint attention. We developed video stimuli which when watched, engender an experience of joint attention in the observer. This allowed us to compare an experience of joint attention to nonjoint attention within an fMRI scanning environment. Joint attention was associated with activity in the ventromedial frontal cortex, the left superior frontal gyrus (BA10), cingulate cortex, and caudate nuclei. The ventromedial frontal cortex has been consistently shown to be activated during mental state attribution tasks. BA10 may serve a cognitive integration function, which in this case seems to utilize a perception–action matching process. The activation we identified in BA10 overlaps with a location of increased grey matter density that we recently found to be associated with autistic spectrum disorder. This study therefore constitutes evidence that the neural substrate of joint attention also serves a mentalizing function. The developmental failure of this substrate in the left anterior frontal lobe may be important in the etiology of autistic spectrum disorder.
Resumo:
Neprilysin (NEP), also known as membrane metalloendopeptidase (MME), is considered amongst the most important ß-amyloid (Aß)-degrading enzymes with regard to prevention of Alzheimer's disease (AD) pathology. Variation in the NEP gene (MME) has been suggested as a risk factor for AD. We conducted a genetic association study of 7MME SNPs - rs1836914, rs989692, rs9827586, rs6797911, rs61760379, rs3736187, rs701109 - with respect to AD risk in a cohort of 1057 probable and confirmed AD cases and 424 age-matched non-demented controls from the United Kingdom, Italy and Sweden. We also examined the association of these MME SNPs with NEP protein level and enzyme activity, and on biochemical measures of Aß accumulation in frontal cortex - levels of total soluble Aß, oligomeric Aß(1-42), and guanidine-extractable (insoluble) Aß - in a sub-group of AD and control cases with post-mortem brain tissue. On multivariate logistic regression analysis one of the MME variants (rs6797911) was associated with AD risk (P = 0.00052, Odds Ratio (O.R. = 1.40, 95% confidence interval (1.16-1.70)). None of the SNPs had any association with Aß levels; however, rs9827586 was significantly associated with NEP protein level (p=0.014) and enzyme activity (p=0.006). Association was also found between rs701109 and NEP protein level (p=0.026) and a marginally non-significant association was found for rs989692 (p=0.055). These data suggest that MME variation may be associated with AD risk but we have not found evidence that this is mediated through modification of NEP protein level or activity.
Resumo:
Resting cortical activity is characterized by a distinct spectral peak in the alpha frequency range. Slowing of this oscillatory peak toward the upper theta-band has been associated with a variety of neurological and neuropsychiatric conditions and has been attributed to altered thalamocortical dynamics. Children born very preterm exhibit altered development of thalamocortical systems. To test the hypothesis that peak oscillatory frequency is slowed in children born very preterm, we recorded resting magnetoencephalography (MEG) from school age children born very preterm (= 32 wk gestation) without major intellectual or neurological impairment and age-matched full-term controls. Very preterm children exhibit a slowing of peak frequency toward the theta-band over bilateral frontal cortex, together with reduced alpha-band power over bilateral frontal and temporal cortex, suggesting that mildly dysrhythmic thalamocortical interactions may contribute to altered spontaneous cortical activity in children born very preterm.
Resumo:
Children born very preterm, even with broadly normal IQ, commonly show selective difficulties in visuospatial processing and executive functioning. Very little, however, is known what alterations in cortical processing underlie these deficits. We recorded MEG while eight children born very preterm (=32 weeks gestational age) and eight full-term controls performed a visual short-term memory task at mean age 7.5 years (range 6.4 - 8.4). Previously, we demonstrated increased long-range alpha and beta band phase synchronization between MEG sensors during STM retention in a group of 17 full-term children age 6-10 years. Here we present preliminary evidence that long-range phase synchronization in very preterm children, relative to controls, is reduced in the alpha-band but increased in the theta-band. In addition, we investigated cortical activation during STM retention employing synthetic aperture magnetometry (SAM) beamformer to localize changes in gamma-band power. Preliminary results indicate sequential activation of occipital, parietal and frontal cortex in control children, as well as reduced activation in very preterm children relative to controls. These preliminary results suggest that children born very preterm exhibit altered inter-regional functional connectivity and cortical activation during cognitive processing.
Resumo:
Even in infancy children from low-SES backgrounds differ in frontal cortex functioning and, by the start of preschool, they frequently show poor performance on executive functions including attention control. These differences may causally mediate later difficulties in academic learning. Here, we present a study to assess the feasibility of using computerized paradigms to train attention control in infants, delivered weekly over five sessions in early intervention centres for low-SES families. Thirty-three 12-month-old infants were recruited, of whom 23 completed the training. Our results showed the feasibility of repeat-visit cognitive training within community settings. Training-related improvements were found, relative to active controls, on tasks assessing visual sustained attention, saccadic reaction time, and rule learning, whereas trend improvements were found on assessments of short-term memory. No significant improvements were found in task switching. These results warrant further investigation into the potential of this method for targeting ‘at-risk’ infants in community settings.
Resumo:
Traumatic brain injury (TBI) often affects social adaptive functioning and these changes in social adaptability are usually associated with general damage to the frontal cortex. Recent evidence suggests that certain neurons within the orbitofrontal cortex appear to be specialized for the processing of faces and facial expressions. The orbitofrontal cortex also appears to be involved in self-initiated somatic activation to emotionally-charged stimuli. According to Somatic Marker Theory (Damasio, 1994), the reduced physiological activation fails to provide an individual with appropriate somatic cues to personally-relevant stimuli and this, in turn, may result in maladaptive behaviour. Given the susceptibility of the orbitofrontal cortex in TBI, it was hypothesized that impaired perception and reactivity to socially-relevant information might be responsible for some of the social difficulties encountered after TBL Fifteen persons who sustained a moderate to severe brain injury were compared to age and education matched Control participants. In the first study, both groups were presented with photographs of models displaying the major emotions and either asked to identify the emotions or simply view the faces passively. In a second study, participants were asked to select cards from decks that varied in terms of how much money could be won or lost. Those decks with higher losses were considered to be high-risk decks. Electrodermal activity was measured concurrently in both situations. Relative to Controls, TBI participants were found to have difficulty identifying expressions of surprise, sadness, anger, and fear. TBI persons were also found to be under-reactive, as measured by electrodermal activity, while passively viewing slides of negative expressions. No group difference,in reactivity to high-risk card decks was observed. The ability to identify emotions in the face and electrodermal reactivity to faces and to high-risk decks in the card game were examined in relationship to social monitoring and empathy as described by family members or friends on the Brock Adaptive Functioning Questionnaire (BAFQ). Difficulties identifying negative expressions (i.e., sadness, anger, fear, and disgust) predicted problems in monitoring social situations. As well, a modest relationship was observed between hypo-arousal to negative faces and problems with social monitoring. Finally, hypo-arousal in the anticipation of risk during the card game related to problems in empathy. In summary, these data are consistent with the view that alterations in the ability to perceive emotional expressions in the face and the disruption in arousal to personally-relevant information may be accounting for some of the difficulties in social adaptation often observed in persons who have sustained a TBI. Furthermore, these data provide modest support for Damasio's Somatic Marker Theory in that physiological reactivity to socially-relevant information has some value in predicting social function. Therefore, the assessment of TBI persons, particularly those with adaptive behavioural problems, should be expanded to determine whether alterations in perception and reactivity to socially-relevant stimuli have occurred. When this is the case, rehabilitative strategies aimed more specifically at these difficulties should be considered.
Resumo:
Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.
Resumo:
Cognitive control involves the ability to flexibly adjust cognitive processing in order to resist interference and promote goal-directed behaviour. Although frontal cortex is considered to be broadly involved in cognitive control, the mechanisms by which frontal brain areas implement control functions are unclear. Furthermore, aging is associated with reductions in the ability to implement control functions and questions remain as to whether unique cortical responses serve a compensatory role in maintaining maximal performance in later years. Described here are three studies in which electrophysiological data were recorded while participants performed modified versions of the standard Sternberg task. The goal was to determine how top-down control is implemented in younger adults and altered in aging. In study I, the effects of frequent stimulus repetition on the interference-related N450 were investigated in a Sternberg task with a small stimulus set (requiring extensive stimulus resampling) and a task with a large stimulus set (requiring no stimulus resampling).The data indicated that constant stimulus res amp ling required by employing small stimulus sets can undercut the effect of proactive interference on the N450. In study 2, younger and older adults were tested in a standard version of the Sternberg task to determine whether the unique frontal positivity, previously shown to predict memory impairment in older adults during a proactive interference task, would be associated with the improved performance when memory recognition could be aided by unambiguous stimulus familiarity. Here, results indicated that the frontal positivity was associated with poorer memory performance, replicating the effect observed in a more cognitively demanding task, and showing that stimulus familiarity does not mediate compensatory cortical activations in older adults. Although the frontal positivity could be interpreted to reflect maladaptive cortical activation, it may also reflect attempts at compensation that fail to fully ameliorate agerelated decline. Furthermore, the frontal positivity may be the result of older adults' reliance on late occurring, controlled processing in contrast to younger adults' ability to identify stimuli at very early stages of processing. In the final study, working memory load was manipulated in the proactive interference Sternberg task in order to investigate whether the N450 reflects simple interference detection, with little need for cognitive resources, or an active conflict resolution mechanism that requires executive resources to implement. Independent component analysis was used to isolate the effect of interference revealing that the canonical N450 was based on two dissociable cognitive control mechanisms: a left frontal negativity that reflects active interference resolution, , but requires executive resources to implement, and a right frontal negativity that reflects global response inhibition that can be relied on when executive resources are minimal but at the cost of a slowed response. Collectively, these studies advance understanding of the factors that influence younger and older adults' ability to satisfy goal-directed behavioural requirements in the face of interference and the effects of age-related cognitive decline.
Resumo:
L'encéphalopathie hépatique (EH) est un syndrome neuropsychiatrique dû à une dysfonction hépatique où l'ammoniaque est un facteur central. Il a déjà été rapporté que l’intoxication aiguë d'ammoniaque induise le stress oxydatif/nitrosatif. La présente étude cible à évaluer le rôle du stress oxydatif/nitrosatif dans 2 modèles de l’EH chronique : (1) l’anastomose portocave (PCA) et (2) la ligation de la voie biliaire (BDL). Ces 2 modèles sont caractérisés par une hyperammoniémie et une augmentation d’ammoniaque centrale, cependant l’œdème cérébral est trouvé seulement chez les rats BDL. Des marqueurs du stress oxydatif/nitrosatif ont été évaluées dans le plasma et cortex frontal. Un stress nitrosatif central a été observé chez les rats PCA; tandis qu’un stress oxydatif/nitrosatif systémique a été démontré seulement chez les rats BDL. Ces résultats suggèrent (1) que l’hyperammoniémie chronique n’induise pas le stress oxydatif/nitrosatif systémique et (2) qu’un synergisme existe entre l’ammoniaque et le stress oxydatif/nitrosatif, en association avec l’œdème cérébral.
Resumo:
The principal cause of mortality in patients with acute liver failure (ALF) is brain herniation resulting from intracranial hypertension caused by a progressive increase of brain water. In the present study, ex vivo high-resolution 1H-NMR spectroscopy was used to investigate the effects of ALF, with or without superimposed hypothermia, on brain organic osmolyte concentrations in relation to the severity of encephalopathy and brain edema in rats with ALF due to hepatic devascularization. In normothermic ALF rats, glutamine concentrations in frontal cortex increased more than fourfold at precoma stages, i.e. prior to the onset of severe encephalopathy, but showed no further increase at coma stages. In parallel with glutamine accumulation, the brain organic osmolytes myo-inositol and taurine were significantly decreased in frontal cortex to 63\% and 67\% of control values, respectively, at precoma stages (p<0.01), and to 58\% and 67\%, respectively, at coma stages of encephalopathy (p<0.01). Hypothermia, which prevented brain edema and encephalopathy in ALF rats, significantly attenuated the depletion of myo-inositol and taurine. Brain glutamine concentrations, on the other hand, did not respond to hypothermia. These findings demonstrate that experimental ALF results in selective changes in brain organic osmolytes as a function of the degree of encephalopathy which are associated with brain edema, and provides a further rationale for the continued use of hypothermia in the management of this condition.
Resumo:
Ammonia is neurotoxic and believed to play a major role in the pathogenesis of hepatic encephalopathy (HE). It has been demonstrated, in vitro and in vivo, that acute and high ammonia treatment induces oxidative stress. Reactive oxygen species (ROS) are highly reactive and can lead to oxidization of proteins resulting in protein damage. The present study was aimed to assess oxidative status of proteins in plasma and brain (frontal cortex) of rats with 4-week portacaval anastomosis (PCA). Markers of oxidative stress, 4-hydroxy-2-nonenal (HNE) and carbonylation were evaluated by immunoblotting in plasma and frontal cortex. Western blot analysis did not demonstrate a significant difference in either HNE-linked or carbonyl derivatives on proteins between PCA and sham-operated control rats in both plasma and frontal cortex. The present study suggests PCA-induced hyperammonemia does not lead to systemic or central oxidative stress.