855 resultados para Fog-signals
Resumo:
In this paper, we present an approach to estimate fractal complexity of discrete time signal waveforms based on computation of area bounded by sample points of the signal at different time resolutions. The slope of best straight line fit to the graph of log(A(rk)A / rk(2)) versus log(l/rk) is estimated, where A(rk) is the area computed at different time resolutions and rk time resolutions at which the area have been computed. The slope quantifies complexity of the signal and it is taken as an estimate of the fractal dimension (FD). The proposed approach is used to estimate the fractal dimension of parametric fractal signals with known fractal dimensions and the method has given accurate results. The estimation accuracy of the method is compared with that of Higuchi's and Sevcik's methods. The proposed method has given more accurate results when compared with that of Sevcik's method and the results are comparable to that of the Higuchi's method. The practical application of the complexity measure in detecting change in complexity of signals is discussed using real sleep electroencephalogram recordings from eight different subjects. The FD-based approach has shown good performance in discriminating different stages of sleep.
Resumo:
Enhancement of the photoacoustic signal from condensed materials by several folds is achieved by the introduction of a liquid with high vapor pressure in the photoacoustic cell. The enhancement is especially marked for low absorption coefficients and high chopping frequencies. Typically the enhancement is two to nine times in the presence of diethyl ether at 293 K. A linear relationship is observed between the enhancement and the vapor pressure of the liquid.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
Salt-fog tests as per International Electrotechnical Commission (IEC) recommendations were conducted on stationtype insulators with large leakage lengths. Later, tests were conducted to simulate natural conditions. From these tests, it was understood that the pollution flashover would occur because of nonuniform pollution layers causing nonuniform voltage distribution during a natural drying-up period. The leakage current during test conditions was very small and the evidence was that the leakage current did not play any significant role in causing flashovers. In the light of the experimental results, some modification of the test procedure is suggested.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
A primary motivation for this work arises from the contradictory results obtained in some recent measurements of the zero-crossing frequency of turbulent fluctuations in shear flows. A systematic study of the various factors involved in zero-crossing measurements shows that the dynamic range of the signal, the discriminator characteristics, filter frequency and noise contamination have a strong bearing on the results obtained. These effects are analysed, and explicit corrections for noise contamination have been worked out. New measurements of the zero-crossing frequency N0 have been made for the longitudinal velocity fluctuation in boundary layers and a wake, for wall shear stress in a channel, and for temperature derivatives in a heated boundary layer. All these measurements show that a zero-crossing microscale, defined as Λ = (2πN0)−1, is always nearly equal to the well-known Taylor microscale λ (in time). These measurements, as well as a brief analysis, show that even strong departures from Gaussianity do not necessarily yield values appreciably different from unity for the ratio Λ/λ. Further, the variation of N0/N0 max across the boundary layer is found to correlate with the familiar wall and outer coordinates; the outer scaling for N0 max is totally inappropriate, and the inner scaling shows only a weak Reynolds-number dependence. It is also found that the distribution of the interval between successive zero-crossings can be approximated by a combination of a lognormal and an exponential, or (if the shortest intervals are ignored) even of two exponentials, one of which characterizes crossings whose duration is of the order of the wall-variable timescale ν/U2*, while the other characterizes crossings whose duration is of the order of the large-eddy timescale δ/U[infty infinity]. The significance of these results is discussed, and it is particularly argued that the pulse frequency of Rao, Narasimha & Badri Narayanan (1971) is appreciably less than the zero-crossing rate.
Resumo:
A new method for decomposition of compo,.~itsei gnals is presented. It is shown that high freyuency portion of composite signal spectrum possesses information on echo structure. The proposed technique does not assume the shape of basic wavelet and does not place any restrictions on the amplitudes and arrival times of echoes inm the composite signal. In the absence of noise any desirrd resolution can he obtained The effect of sampling rate and jFequency window function on echo resolutio.~ are di.wussed. Voiced speech segment is considered as an example of conzpxite sigrnl to demonstrate the application of the decomposition technique.
Resumo:
The transmitted signal is assumed to consist of a close succession of rectangular pulses of equal width. A matched filter scheme is employed and a theory is developed for a computer-aided optimization of the envelope of monotone compact signals for maximum rejection of dense clutter of any given distribution in range. Specific results are presented and indeterminate cases are discussed.
Resumo:
Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.
Resumo:
Vuodenajat rytmittävät monivuotisten kasvien elämää pohjoisella pallonpuoliskolla, jolla varmin merkki lähestyvästä talvikaudesta on asteittain lyhenevä päivänpituus. Kun päivänpituus on lyhentynyt tiettyyn raja-arvoon saakka, kasvu hiipuu ja kasvin kehityksessä tapahtuu suuria muutoksia. Väitöskirjatyössäni tutkittiin mekanismeja, jotka liittyvät pituuskasvun päättymiseen, silmujen lepotilan kehittymiseen ja kärkisilmun muodostumiseen hybridihaavan ja koivuntaimilla lyhyen päivänpituuden seurauksena kasvihuoneolosuhteissa. Vain lepotilaiset silmut selviytyvät luonnossa ankaran talvikauden yli, joten etenkin lepotilan kehittymisen tutkiminen on keskeistä pyrittäessä selvittämään monivuotisille kasveille tyypillisen kasvutavan mekanismeja. Jo pitkään on tiedetty, että täysikasvuiset lehdet vastaanottavat tiedon päivänpituudesta ja lähettävät signaaleja varren johtojänteissä ylöspäin kohti kasvin kärkiosaa. Sen sijaan varren kärjen ja kärkikasvupisteen roolia lepotilan kehittymisessä on selvitetty vain vähän. Kuitenkin juuri kärkikasvupisteen selviytyminen vuodesta toiseen on tärkeää, koska sen jakautumiskykyiset solukot tuottavat kasvin maanpäälliset osat. Tässä työssä tehdyissä varttamiskokeissa osoitettiin, että varren kärki ei ainoastaan vastaanota signaaleja lehdistä ja ajoita toimintaansa niiden mukaan, vaan myös kärjellä itsellään on aktiivinen rooli lepotilan kehittymisessä. Erityisesti kiinnitettiin huomiota kärkikasvupisteen eri alueiden, ns. apikaalimeristeemin ja rib-meristeemin erilaisiin tehtäviin ja pääteltiin, että molemmat vaikuttavat lepotilan kehittymiseen. Kokeissa käytettiin normaalien hybridihaapojen lisäksi siirtogeenisiä hybridihaapoja, jotka eivät lopeta kasvuaan lyhyt päivä –olosuhteissa. Siirtogeeniset hybridihaavat ilmensivät voimakkaasti fytokromi A -nimistä valon vastaanottajamolekyyliä rib-meristeemin alueella, mikä saattoi osaltaan vaikuttaa poikkeavaan pituuskasvukäyttäytymiseen. Myös useiden lepotilan kehittymiseen liittyvien geenien ilmenemisessä havaittiin poikkeavuuksia verrattuna ei-siirtogeenisiin kontrolleihin, joiden silmuissa kehittyi lepotila lyhyt päivä –altistuksen seurauksena. Väitöskirjatyössäni havaittiin, että myös kaasumainen kasvihormoni etyleeni toimii viestinvälittäjänä silmujen lepotilan kehittymisessä ja vaikuttaa etenkin lepotilan oikeaan ajoittumiseen. Etyleenillä huomattiin olevan määräävä rooli päätesilmun muodostumisessa: siirtogeeniset koivut, jotka eivät aisti etyleeniä, eivät muodostaneet päätesilmua. Silti siirtogeeniset koivut vaipuivat lepotilaan, joskin myöhemmin kuin ei-siirtogeeniset kontrollit. Tämän perusteella todettiin, että lepotilan ja päätesilmun kehittyminen ovat erillisiä kehitystapahtumia, vaikka ne saattavatkin ajoittua osaksi päällekkäin.
Resumo:
One of the most important applications of adaptive systems is in noise cancellation using adaptive filters. Ln this paper, we propose adaptive noise cancellation schemes for the enhancement of EEG signals in the presence of EOG artifacts. The effect of two reference inputs is studied on simulated as well as recorded EEG signals and it is found that one reference input is enough to get sufficient minimization of EOG artifacts. This has been verified through correlation analysis also. We use signal to noise ratio and linear prediction spectra, along with time plots, for comparing the performance of the proposed schemes for minimizing EOG artifacts from contaminated EEG signals. Results show that the proposed schemes are very effective (especially the one which employs Newton's method) in minimizing the EOG artifacts from contaminated EEG signals.
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.