967 resultados para Fluorescent lifetimes
Resumo:
Wild-type A75/17-Canine distemper virus (CDV) is a highly virulent strain, which induces a persistent infection in the central nervous system (CNS) with demyelinating disease. Wild-type A75/17-CDV, which is unable to replicate in cell lines to detectable levels, was adapted to grow in Vero cells and was designated A75/17-V. Sequence comparison between the two genomes revealed seven nucleotide differences located in the phosphoprotein (P), the matrix (M) and the large (L) genes. The P gene is polycistronic and encodes two auxiliary proteins, V and C, besides the P protein. The mutations resulted in amino acid changes in the P and V, but not in the C protein, as well as in the M and L proteins. Here, a rescue system was developed for the A75/17-V strain, which was shown to be attenuated in vivo, but retains a persistent infection phenotype in Vero cells. In order to track the recombinant virus, an additional transcription unit coding for the enhanced green fluorescent protein (eGFP) was inserted at the 3' proximal position in the A75/17-V cDNA clone. Reverse genetics technology will allow us to characterize the genetic determinants of A75/17-V CDV persistent infection in cell culture.
Resumo:
We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Resumo:
Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root JA signal velocities on wounding, revealing two distinct phases of JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses.
Resumo:
We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Resumo:
The present study was designed to investigate the efficacy of the fluorescent dyes Fast Blue (FB), Fluoro-Gold (FG), and Diamidino Yellow (DY) for retrograde tracing of lumbar dorsal root ganglia after their subcutaneous injection into different hindlimb digits. Injection of equal volumes (0.5 mu l) of 5% FB or 2% FG resulted in similar mean numbers of sensory neurones labelled by each tracer. Injection of equal volumes (0.5 mu l) of FB or FG in a single digit followed 10 days later by a second injection of the same volume of 5% DY into the same digit resulted in similar mean numbers of labelled sensory neurones for each of the three tracers. Furthermore, on average, 75% of all the FB-labelled cells and 74% of all FC-labelled cells also contained DY. Repeating the same experiment with an increased volume of DY (1.5 mu l) resulted in an increase in the mean number of double-labelled profiles to 82 and 84% for FB and FG, respectively. The results show that FB, FG and DY label similar numbers of cutaneous afferents and that a high level of double labelling may be obtained after sequential injections in digits. These properties make them suitable candidates in investigations where a combination of tracers with similar labelling efficacies is needed.
Resumo:
Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.
Resumo:
Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester (Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in combination with flow cytometry was evaluated. Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be distinguished based on their fluorescence intensity in flow cytometry analysis. Non-treated cells showed relatively high green fluorescence levels due to staining with either Calcein AM or cFDA, whereas damaged cells (heat-treated) showed high red fluorescence levels due to staining with PI. Flow cytometry also allowed a rapid quantification of viable Cmm cells labeled with Calcein AM or cFDA and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in combination with fluorescent probes appears to be a promising technique for assessing viability of Cmm cells when cells are labeled with Calcein AM or the combination of Calcein AM with PI.
Resumo:
In Brazil, Colletotrichum gloeosporioides is associated with a complex of symptoms in coffee culture. Although this pathogen had its pathogenesis observed and identified, its importance has still been questioned due to its several endophytic forms, raising doubts as to the real importance of the pathosystem. The aim of this study was to demonstrate, by using an isolate transformed with the gene gfp, the infection and colonization capability of C. gloeosporioides in coffee seedlings. After the fourth day of inoculation, manifestation of symptoms as punctual necrosis could be observed, which progressed during the evaluation period, culminating in the death of seedlings. Epifluorescence microscopy confirmed the presence of the pathogen in the seedlings, as well as the visualization of internal colonization of tissues, acervulus formation and conidium production, confirming that it was responsible for the observed symptoms.
Resumo:
The study determined the sensitivity and specificity of the indirect fluorescent antibody test (IFAT) and modified agglutination test (MAT) for anti-Toxoplasma gondii antibody detection by analyzing sera from 46 experimentally infected pigs. Values for sensitivity were 95.7% (confidence interval 95%: 84.0-99.2%) and for specificity 97.8% (confidence interval 95%: 87.0-99.9%) in both tests. There was an optimum agreement of results between IFAT and MAT evidenced by a Kappa test of 0.86. These results validate these tests for the detection of T. gondii infection in pigs. IFAT and MAT despite methodologies with different characteristics and readings have similar accuracy in pig serum samples.
Resumo:
Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.
Resumo:
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.
Resumo:
This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.
Resumo:
Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.
Resumo:
Acute promyelocytic leukemia (AML M3) is a well-defined subtype of leukemia with specific and peculiar characteristics. Immediate identification of t(15;17) or the PML/RARA gene rearrangement is fundamental for treatment. The objective of the present study was to compare fluorescent in situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR) and karyotyping in 18 samples (12 at diagnosis and 6 after treatment) from 13 AML M3 patients. Bone marrow samples were submitted to karyotype G-banding, FISH and RT-PCR. At diagnosis, cytogenetics was successful in 10 of 12 samples, 8 with t(15;17) and 2 without. FISH was positive in 11/12 cases (one had no cells for analysis) and positivity varied from 25 to 93% (mean: 56%). RT-PCR was done in 6/12 cases and all were positive. Four of 8 patients with t(15;17) presented positive RT-PCR as well as 2 without metaphases. The lack of RT-PCR results in the other samples was due to poor quality RNA. When the three tests were compared at diagnosis, karyotyping presented the translocation in 80% of the tested samples while FISH and RT-PCR showed the PML/RARA rearrangement in 100% of them. Of 6 samples evaluated after treatment, 3 showed a normal karyotype, 1 persistence of an abnormal clone and 2 no metaphases. FISH was negative in 4 samples studied and 2 had no material for analysis. RT-PCR was positive in 4 (2 of which showed negative FISH, indicating residual disease) and negative in 2. When the three tests were compared after treatment, they showed concordance in 2 of 6 samples or, when there were not enough cells for all tests, concordance between karyotype and RT-PCR in one. At remission, RT-PCR was the most sensitive test in detecting residual disease, as expected (positive in 4/6 samples). An incidence of about 40% of 5' breaks and 60% of 3' breaks, i.e., bcr3 and bcr1/bcr2, respectively, was observed.