979 resultados para Flight control.
Resumo:
A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.
Resumo:
There are many applications in aeronautical/aerospace engineering where some values of the design parameters states cannot be provided or determined accurately. These values can be related to the geometry(wingspan, length, angles) and or to operational flight conditions that vary due to the presence of uncertainty parameters (Mach, angle of attack, air density and temperature, etc.). These uncertainty design parameters cannot be ignored in engineering design and must be taken into the optimisation task to produce more realistic and reliable solutions. In this paper, a robust/uncertainty design method with statistical constraints is introduced to produce a set of reliable solutions which have high performance and low sensitivity. Robust design concept coupled with Multi Objective Evolutionary Algorithms (MOEAs) is defined by applying two statistical sampling formulas; mean and variance/standard deviation associated with the optimisation fitness/objective functions. The methodology is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. It is implemented for two practical Unmanned Aerial System (UAS) design problems; the flrst case considers robust multi-objective (single disciplinary: aerodynamics) design optimisation and the second considers a robust multidisciplinary (aero structures) design optimisation. Numerical results show that the solutions obtained by the robust design method with statistical constraints have a more reliable performance and sensitivity in both aerodynamics and structures when compared to the baseline design.
Resumo:
This paper presents a guidance approach for aircraft in periodic inspection tasks. The periodic inspection task involves flying to a series of desired fixed points of inspection with specified attitude requirements so that requirements for downward looking sensors, such as cameras, are achieved. We present a solution using a precision guidance law and a bank turn dynamics model. High fidelity simulation studies illustrate the effectiveness of this approach under both ideal (nil-wind) and non-ideal (wind) conditions.
Resumo:
Fixed-wing aircraft equipped with downward pointing cameras and/or LiDAR can be used for inspecting approximately piecewise linear assets such as oil-gas pipelines, roads and power-lines. Automatic control of such aircraft is important from a productivity and safety point of view (long periods of precision manual flight at low-altitude is not considered reasonable from a safety perspective). This paper investigates the effect of any unwanted coupling between guidance and autopilot loops (typically caused by unmodeled delays in the aircraft’s response), and the specific impact of any unwanted dynamics on the performance of aircraft undertaking inspection of piecewise linear corridor assets (such as powerlines). Simulation studies and experimental flight tests are used to demonstrate the benefits of a simple compensator in mitigating the unwanted lateral oscillatory behaviour (or coupling) that is caused by unmodeled time constants in the aircraft dynamics.
Resumo:
This paper presents the hardware development and testing of a new concept for air sampling via the integration of a prototype spore trap onboard an unmanned aerial system (UAS).We propose the integration of a prototype spore trap onboard a UAS to allow multiple capture of spores of pathogens in single remote locations at high or low altitude, otherwise not possible with stationary sampling devices.We also demonstrate the capability of this system for the capture of multiple time-stamped samples during a single mission.Wind tunnel testing was followed by simulation, and flight testing was conducted to measure and quantify the spread during simulated airborne air sampling operations. During autonomous operations, the onboard autopilot commands the servo to rotate the sampling device to a new indexed location once the UAS vehicle reaches the predefined waypoint or set of waypoints (which represents the region of interest). Time-stamped UAS data are continuously logged during the flight to assist with analysis of the particles collected. Testing and validation of the autopilot and spore trap integration, functionality, and performance is described. These tools may enhance the ability to detect new incursions of spores
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
This paper presents a feasible spatial collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
This paper presents a nonlinear gust-attenuation controller to stabilize velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in the presence of wind gusts. The proposed controller aims to achieve a steady-state flight condition such that the host UAV can avoid airspace collision with other UAVs during the cruise flight. Based on the typical UAV model capturing flight aerodynamics, a nonlinear Hinf controller is developed with rapid response property in consideration of actuator constraints. Simulations are conducted for the Shadow UAV to verify performance of the proposed controller. Comparative studies with the proportional-integral derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight with safety guarantees.
Resumo:
Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.
Resumo:
In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.