880 resultados para Fault proness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced Scan design can significantly improve the fault coverage for two pattern delay tests at the cost of exorbitantly high area overhead. The redundant flip-flops introduced in the scan chains have traditionally only been used to launch the two-pattern delay test inputs, not to capture tests results. This paper presents a new, much lower cost partial Enhanced Scan methodology with both improved controllability and observability. Facilitating observation of some hard to observe internal nodes by capturing their response in the already available and underutilized redundant flip-flops improves delay fault coverage with minimal or almost negligible cost. Experimental results on ISCAS'89 benchmark circuits show significant improvement in TDF fault coverage for this new partial enhance scan methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now realised (1,2,3) that a knowledge of stacking fault energy is fundamental for an understanding of the mechanical behaviour of metals. There are several processes in which the imperfect dislocations have to recombine locally to form an unextended dislocation . For intersection of two dislocations it is, for example, necessary to form 'constrictions'. Cross slip of extended dislocations also involves constriction. The onset of stage llI work hardening in a crystal with close-packed structure is attributed to cross slip and hence is controlled by the stacking fault energy (SPE). Methods of estimation of SFE are based on either the direct observation of stacking faults in an electron microscope or their effects on the deformation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hazards associated with major accident hazard (MAN) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fault-tolerant multi-transputer architecture capable of tolerating failure of any one component in the system is described. In the proposed architecture the processing nodes are automatically reconfigured in the event of a fault and the computations continue from the stage where the fault occurred. The process of reconfiguration is transparent to the user, and the identity of the failed component is communicated to the user along with the results of computations. Parallel solution of a typical engineering problem involving solution of Laplace's equation by the boundary element method has been implemented. The performance of the architecture in the event of faults has been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper we introduce a new energy-efficient fault-tolerant CMP architecture known as Redundant Execution using Critical Value Forwarding (RECVF). RECVF is based on two observations: (i) forwarding critical instruction results from the leading to the trailing core enables the latter to execute faster, and (ii) this speedup can be exploited to reduce energy consumption by operating the trailing core at a lower voltage-frequency level. Our evaluation shows that RECVF consumes 37% less energy than conventional dual modular redundant (DMR) execution of a program. It consumes only 1.26 times the energy of a non-fault-tolerant baseline and has a performance overhead of just 1.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FDDI (Fibre Distributed Data Interface) is a 100 Mbit/s token ring network with two counter rotating optical rings. In this paper various possible faults (like lost token, link failures, etc.) are considered, and fault detection and the ring recovery process in case of a failure and the reliability mechanisms provided are studied. We suggest a new method to improve the fault detection and ring recovery process. The performance improvement in terms of station queue length and the average delay is compared with the performance of the existing fault detection and ring recovery process through simulation. We also suggest a modification for the physical configuration of the FDDI networks within the guidelines set by the standard to make the network more reliable. It is shown that, unlike the existing FDDI network, full connectivity is maintained among the stations even when multiple single link failures occur. A distributed algorithm is proposed for link reconfiguration of the modified FDDI network when many successive as well as simultaneous link failures occur. The performance of the modified FDDI network under link failures is studied through simulation and compared with that of the existing FDDI network.