981 resultados para Dynamic programming (DP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä diplomityössä tutkitaan dispariteettikartan laskennan tehostamista interpoloimalla. Kolmiomittausta käyttämällä stereokuvasta muodostetaan ensin harva dispariteettikartta, jonka jälkeen koko kuvan kattava dispariteettikartta muodostetaan interpoloimalla. Kolmiomittausta varten täytyy tietää samaa reaalimaailman pistettä vastaavat kuvapisteet molemmissa kameroissa. Huolimatta siitä, että vastaavien pisteiden hakualue voidaan pienentää kahdesta ulottuvuudesta yhteen ulottuvuuteen käyttämällä esimerkiksi epipolaarista geometriaa, on laskennallisesti tehokkaampaa määrittää osa dispariteetikartasta interpoloimalla, kuin etsiä vastaavia kuvapisteitä stereokuvista. Myöskin johtuen stereonäköjärjestelmän kameroiden välisestä etäisyydestä, kaikki kuvien pisteet eivät löydy toisesta kuvasta. Näin ollen on mahdotonta määrittää koko kuvan kattavaa dispariteettikartaa pelkästään vastaavista pisteistä. Vastaavien pisteiden etsimiseen tässä työssä käytetään dynaamista ohjelmointia sekä korrelaatiomenetelmää. Reaalimaailman pinnat ovat yleisesti ottaen jatkuvia, joten geometrisessä mielessä on perusteltua approksimoida kuvien esittämiä pintoja interpoloimalla. On myöskin olemassa tieteellistä näyttöä, jonkamukaan ihmisen stereonäkö interpoloi objektien pintoja.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The maintenance of electric distribution network is a topical question for distribution system operators because of increasing significance of failure costs. In this dissertation the maintenance practices of the distribution system operators are analyzed and a theory for scheduling maintenance activities and reinvestment of distribution components is created. The scheduling is based on the deterioration of components and the increasing failure rates due to aging. The dynamic programming algorithm is used as a solving method to maintenance problem which is caused by the increasing failure rates of the network. The other impacts of network maintenance like environmental and regulation reasons are not included to the scope of this thesis. Further the tree trimming of the corridors and the major disturbance of the network are not included to the problem optimized in this thesis. For optimizing, four dynamic programming models are presented and the models are tested. Programming is made in VBA-language to the computer. For testing two different kinds of test networks are used. Because electric distribution system operators want to operate with bigger component groups, optimal timing for component groups is also analyzed. A maintenance software package is created to apply the presented theories in practice. An overview of the program is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans le but d’optimiser la représentation en mémoire des enregistrements Scheme dans le compilateur Gambit, nous avons introduit dans celui-ci un système d’annotations de type et des vecteurs contenant une représentation abrégée des enregistrements. Ces derniers omettent la référence vers le descripteur de type et l’entête habituellement présents sur chaque enregistrement et utilisent plutôt un arbre de typage couvrant toute la mémoire pour retrouver le vecteur contenant une référence. L’implémentation de ces nouvelles fonctionnalités se fait par le biais de changements au runtime de Gambit. Nous introduisons de nouvelles primitives au langage et modifions l’architecture existante pour gérer correctement les nouveaux types de données. On doit modifier le garbage collector pour prendre en compte des enregistrements contenants des valeurs hétérogènes à alignements irréguliers, et l’existence de références contenues dans d’autres objets. La gestion de l’arbre de typage doit aussi être faite automatiquement. Nous conduisons ensuite une série de tests de performance visant à déterminer si des gains sont possibles avec ces nouvelles primitives. On constate une amélioration majeure de performance au niveau de l’allocation et du comportement du gc pour les enregistrements typés de grande taille et des vecteurs d’enregistrements typés ou non. De légers surcoûts sont toutefois encourus lors des accès aux champs et, dans le cas des vecteurs d’enregistrements, au descripteur de type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse est divisée en deux grands chapitres, dont le premier porte sur des problèmes de commande optimale en dimension un et le deuxième sur des problèmes en dimension deux ou plus. Notons bien que, dans cette thèse, nous avons supposé que le facteur temps n'intervient pas. Dans le premier chapitre, nous calculons, au début, l'équation de programmation dynamique pour la valeur minimale F de l'espérance mathématique de la fonction de coût considérée. Ensuite, nous utilisons le théorème de Whittle qui est applicable seulement si une condition entre le bruit blanc v et les termes b et q associés à la commande est satisfaite. Sinon, nous procédons autrement. En effet, un changement de variable transforme notre équation en une équation de Riccati en G= F', mais sans conditions initiales. Dans certains cas, à partir de la symétrie des paramètres infinitésimaux et de q, nous pouvons en déduire le point x' où G(x')=0. Si ce n'est pas le cas, nous nous limitons à des bonnes approximations. Cette même démarche est toujours possible si nous sommes dans des situations particulières, par exemple, lorsque nous avons une seule barrière. Dans le deuxième chapitre, nous traitons les problèmes en dimension deux ou plus. Puisque la condition de Whittle est difficile à satisfaire dans ce cas, nous essayons de généraliser les résultats du premier chapitre. Nous utilisons alors dans quelques exemples la méthode des similitudes, qui permet de transformer le problème en dimension un. Ensuite, nous proposons une nouvelle méthode de résolution. Cette dernière linéarise l'équation de programmation dynamique qui est une équation aux dérivées partielles non linéaire. Il reste à la fin à trouver les conditions initiales pour la nouvelle fonction et aussi à vérifier que les n expressions obtenues pour F sont équivalentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Des évidences expérimentales récentes indiquent que les ARN changent de structures au fil du temps, parfois très rapidement, et que ces changements sont nécessaires à leurs activités biochimiques. La structure de ces ARN est donc dynamique. Ces mêmes évidences notent également que les structures clés impliquées sont prédites par le logiciel de prédiction de structure secondaire MC-Fold. En comparant les prédictions de structures du logiciel MC-Fold, nous avons constaté un lien clair entre les structures presque optimales (en termes de stabilité prédites par ce logiciel) et les variations d’activités biochimiques conséquentes à des changements ponctuels dans la séquence. Nous avons comparé les séquences d’ARN du point de vue de leurs structures dynamiques afin d’investiguer la similarité de leurs fonctions biologiques. Ceci a nécessité une accélération notable du logiciel MC-Fold. L’approche algorithmique est décrite au chapitre 1. Au chapitre 2 nous classons les impacts de légères variations de séquences des microARN sur la fonction naturelle de ceux-ci. Au chapitre 3 nous identifions des fenêtres dans de longs ARN dont les structures dynamiques occupent possiblement des rôles dans les désordres du spectre autistique et dans la polarisation des œufs de certains batraciens (Xenopus spp.).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.