975 resultados para Depth perception
Resumo:
A set of full-color images of objects is described for use in experiments investigating the effects of in-depth rotation on the identification of three-dimensional objects. The corpus contains up to 11 perspective views of 70 nameable objects. We also provide ratings of the "goodness" of each view, based on Thurstonian scaling of subjects' preferences in a paired-comparison experiment. An exploratory cluster analysis on the scaling solutions indicates that the amount of information available in a given view generally is the major determinant of the goodness of the view. For instance, objects with an elongated front-back axis tend to cluster together, and the front and back views of these objects, which do not reveal the object's major surfaces and features, are evaluated as the worst views.
Resumo:
The present study examines the effect of the goodness of view on the minimal exposure time required to recognize depth-rotated objects. In a previous study, Verfaillie and Boutsen (1995) derived scales of goodness of view, using a new corpus of images of depth-rotated objects. In the present experiment, a subset of this corpus (five views of 56 objects) is used to determine the recognition exposure time for each view, by increasing exposure time across successive presentations until the object is recognized. The results indicate that, for two thirds of the objects, good views are recognized more frequently and have lower recognition exposure times than bad views.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.
Resumo:
The purpose of this research was to explore perceptions among 9 th through 12th grade students from Brazil, Haiti and Jamaica, with respect to their heritage languages: Portuguese, Haitian Creole, and Jamaican Patois. An additional purpose was to understand in greater detail possible variations of perception with respect to heritage language maintenance (or loss) in relation to one’s gender, first language, and place of birth. The research implemented semi-structured interviews with male and female adolescents with these heritage language backgrounds. Participants’ responses were recorded and transcribed. The transcriptions were analyzed via a categorizing of themes emerging from the data. Data were analyzed using inductive analysis. Three categories emerged from the inductive analysis of the data: (a) heritage language, (b) bilingualism, and (c) English as a second language. The analysis reveals that as participants learn English, they continue to value their heritage language and feel positively toward bilingualism, but differ in their preference regarding use of native language and English in a variety of contexts. There seems to be a mismatch between a positive attitude and an interest in learning their heritage language. Families and teachers, as agents, may not be helping students fully understand the advantages of bilingualism. Students seem to have a lack of understanding of bilingualism’s cognitive and bi-literacy benefits. Instead, employment seems to be perceived as the number one reason for becoming bilingual. Also, the students have a desire to add culture to the heritage language curriculum. The study was conducted at one of the most diverse and largest high schools in Palm Beach, in Palm Beach County, Florida. The results of this study imply that given the positive attitude toward heritage language and bilingualism, students need to be guided in exploring their understanding of heritage language and bilingualism. Implications for teaching and learning, as well as recommendations for further research, are included.
Resumo:
This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.
Resumo:
This short paper presents a means of capturing non spatial information (specifically understanding of places) for use in a Virtual Heritage application. This research is part of the Digital Songlines Project which is developing protocols, methodologies and a toolkit to facilitate the collection and sharing of Indigenous cultural heritage knowledge, using virtual reality. Within the context of this project most of the cultural activities relate to celebrating life and to the Australian Aboriginal people, land is the heart of life. Australian Indigenous art, stories, dances, songs and rituals celebrate country as its focus or basis. To the Aboriginal people the term “Country” means a lot more than a place or a nation, rather “Country” is a living entity with a past a present and a future; they talk about it in the same way as they talk about their mother. The landscape is seen to have a spiritual connection in a view seldom understood by non-indigenous persons; this paper introduces an attempt to understand such empathy and relationship and to reproduce it in a virtual environment.