151 resultados para DBS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) is a novel and effective surgical intervention for refractory Parkinson's disease (PD). The authors review the current literature to identify the clinical correlates associated with subthalamic nucleus (STN) DBS-induced hypomania/mania in PD patients. Ventromedial electrode placement has been most consistently implicated in the induction of STN DBS-induced mania. There is some evidence of symptom amelioration when electrode placement is switched to a more dorsolateral contact. Additional clinical correlates may include unipolar stimulation, higher voltage (>3 V), male sex, and/or early-onset PD. STN DBS-induced psychiatric adverse events emphasize the need for comprehensive psychiatric presurgical evaluation and follow-up in PD patients. Animal studies and prospective clinical research, combined with advanced neuroimaging techniques, are needed to identify clinical correlates and underlying neurobiological mechanisms of STN DBS-induced mania. Such working models would serve to further our understanding of the neurobiological underpinnings of mania and contribute valuable new insight toward development of future DBS mood-stabilization therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object

The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM).
Methods

The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ~ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra.
Results

The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV.
Conclusions

Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background / Purpose: To determine if clinically effective deep brain stimulation (DBS) of neurosurgical targets for treatment-resistant depression regulates transient mesoaccumbens dopamine release in control and antidepressant-resistant animals (rats).

Main conclusion: In control rats, DBS stimulation of either the nucleus accumbens or infralimbic cortex significantly attenuated transient mesoaccumbens dopamine efflux, with nucleus accumbens DBS inducing a greater attenuation than infralimbic DBS. High frequency DBS of both targets induced long-term depression of transient accumbens dopamine release, lasting > 2hr post DBS.

Conversely, in antidepressant-resistant rats, infralimbic DBS significantly potentiated transient mesoaccumbens dopamine efflux during stimulation, but failed to induce long-lasting changes in neurotransmission. This suggests that a key mechanism of DBS for treatment-resistant depression is the regulation of dysfunctional mesoaccumbens dopamine neurotransmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object  In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time.

Methods  The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme–linked electrode to measure glutamate; and 3) a multiple enzyme–linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig.

Results   The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA.

Conclusions  By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the premature and somewhat infamous rise and fall of psychosurgery in the mid-20th century, the current era of functional neuromodulation proffers immense opportunity for surgical intervention in treatment-resistant psychiatric disorders. On the basis of recent successes with novel, focused, less invasive, and reversible treatment strategies for movement disorders, several therapeutic trials have been conducted to investigate the effectiveness of deep brain stimulation (DBS) in treatment-resistant depression, obsessive-compulsive disorder (OCD), and Tourette syndrome. The many anatomic targets for these psychiatric disorders are indicative of both the system-wide effects of DBS and the network-level dysfunction mediating the emotional and cognitive disturbances. To gain insight into the application of neuromodulation therapies and their further advancement, we must elucidate neuroanatomic networks involved in refractory psychiatric illness, the neurophysiological anomalies that contribute to disordered information processing therein, and the local and system-wide modulatory effects of DBS. This review discusses the history of psychosurgical procedures, recent DBS clinical data, current anatomic models of psychopathology, and possible therapeutic mechanisms of action of DBS neuromodulation. Our search criteria for PubMed included combinations of the following terms: neuromodulation, DBS, depression, OCD, Tourette syndrome, mechanism of action, and history. Dates were not restricted. As clinical and basic scientific investigations probe the neuromodulatory effects of DBS in the treatment of refractory neuropsychiatric illness, our knowledge of these disorders and our potential to treat them are rapidly expanding. Indeed, this modern era of neuromodulation may provide the key that unlocks many of the mysteries pertaining to the biological basis of disordered emotional neurocircuitry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact meandered three-layer stacked circular planar inverted-F antenna is designed and simulated at the UHF band (902.75 – 927.25 MHz) for passive deep brain stimulation implants. The UHF band is used because it offers small antenna size, and high data rate. The top and middle radiating layers are meandered, and low cost substrate and superstrate materials are used to limit the radius and height of the antenna to 5 mm and 1.64 mm, respectively. A dielectric substrate of FR-4 of εr= 4.7 and δ= 0.018, and a biocompatible superstrate of silicone of er= 3.7 and d= 0.003 with thickness of 0.2 mm are used in the design. The resonance frequency of the proposed antenna is 918 MHz with a bandwidth of 24 MHz at return loss of −10 dB in free space. The antenna parameter such as 3D gain pattern of the designed antenna within a skin-tissue model is evaluated by using the finite element method. The compactness, wide bandwidth, round shape, and stable characteristics in skin make this antenna suitable for DBS. The feasibility of the wireless power transmission to the implant in the human head is also examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-layer circular planar inverted-F antenna is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for closed loop deep brain stimulation implant. The ISM band is considered due to the capabilities of small antenna size, high data rate, and long transmission range. In the proposed four-layer antenna, the top three radiating layers are meandered, and a high permittivity substrate and superstrate materials are used to limit the radius and the height of the antenna to 3.5 mm and 2.2 mm, respectively. The bottom layer works as a ground plate. The Roger RO3210 of εr = 10.2 and δ = 0.003 is used as a dielectric substrate and superstrate. The resonance frequency of the proposed antenna is 915 MHz with a bandwidth of 12 MHz at the return loss of -10 dB in free space. The stacked layered structure reduces the antenna size, and the circular shape makes it easily implantable into the human head. The antenna parameters (e.g. 3D gain pattern), SAR value, and electric field distribution within a six layers spherical head model are evaluated by using the finite element method (FEM). The feasibility of the wireless transmission of power, control and command signal to the implant in the human head is also examined. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Postural instability is a major source of disability in idiopathic Parkinson's disease (IPD). Deep brain stimulation of the globus pallidus internus (GPI-DBS) improves clinician-rated balance control but there have been few quantitative studies of its interactive effects with levodopa (L-DOPA). The purpose of this study was to compare the short-term and interactive effects of GPI-DBS and L-DOPA on objective measures of postural stability in patients with longstanding IPD. METHODS: Static and dynamic posturography during a whole-body leaning task were performed in 10 IPD patients with bilateral GPI stimulators under the following conditions: untreated (OFF); L-DOPA alone; DBS alone; DBS+L-DOPA, and in 9 healthy Control subjects. Clinical status was assessed using the UPDRS and AIMS Dyskinesia Scale. RESULTS: Static sway was greater in IPD patients in the OFF state compared to the Control subjects and was further increased by L-DOPA and reduced by GPI-DBS. In the dynamic task, L-DOPA had a greater effect than GPI-DBS on improving Start Time, but reduced the spatial accuracy and directional control of the task. When the two therapies were combined, GPI-DBS prevented the L-DOPA induced increase in static sway and improved the accuracy of the dynamic task. CONCLUSION: The findings demonstrate GPI-DBS and L-DOPA have differential effects on temporal and spatial aspects of postural control in IPD and that GPI-DBS counteracts some of the adverse effects of L-DOPA. Further studies on larger numbers of patients with GPI stimulators are required to confirm these findings and to clarify the contribution of dyskinesias to impaired dynamic postural control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, foram preparadas blendas de polipropileno (PP) com elastômeros termoplásticos (TPE) tipo SBS (poliestireno-bloco-polibutadieno-blocopoliestireno) e tipo SEBS (poliestireno-bloco-poli(etileno-co-butileno)-blocopoliestireno) a fim de se avaliar a influência do tipo e concentração de elastômero nas propriedades do polímero final. Foram utilizados como matrizes de polipropileno um homopolímero (PP-H) e um copolímero aleatório de propileno-co-etileno (PP-R). A fim de avaliar o efeito da presença de um agente nucleante na matriz PP-R, algumas blendas de PP-R/TPE foram preparadas utilizando-se dibenzilideno sorbitol (DBS). Os resultados mostraram que o TPE teve efeito nucleante na cristalização do PP, aumentando a temperatura de cristalização (Tc) e estreitando o pico de fusão, sendo que o SBS teve um maior efeito do que o SEBS em ambas matrizes, resultando em maiores valores de Tc. Embora o efeito de nucleação possa mudar a cristalinidade da matriz na blenda, as propriedades mecânicas foram mais suscetíveis às alterações na morfologia ou dispersão do TPE nas matrizes de PP. Estudos de microscopia eletrônica de varredura (MEV) mostraram que as morfologias das blendas com TPE apresentaram-se diferenciadas, dependendo do tipo e principalmente da quantidade adicionada de TPE em cada matriz. Na matriz PP-H observou-se um maior número de domínios de TPE do que nas matrizes PP-R e PP-RN O tamanho médio dos domínios elastoméricos nas blendas PP/SEBS foram menores e mais bem dispersos do que nas blendas PP/SBS, resultando em um material com melhor resistência ao impacto à baixa temperatura. Ensaios de tensão-deformação mostraram que a adição dos TPES diminui a tensão no escoamento e o módulo de Young para todas matrizes, aumentando o alongamento na ruptura de forma mais significativa no caso das blendas PP-R/TPE. Ambos TPES tiveram igual influência nas propriedades de tração, especialmente com a matriz PPR, mostrando que ambos elastômeros podem ser usados como modificadores de impacto, em diferentes formulações que atendam aplicações específicas de mercado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Gaucher Disease (GD) is a hereditary lysosomal storage disorder characterized by the accumulation of glucosylceramide, mainly in the cells of the reticuloendothelial system, due to a deficiency of the enzyme acid β-glucosidase (GBA). Diagnosis is usually based on measurement of GBA activity in peripheral leukocytes. The purpose of this study was to evaluate the ability of screening for GBA and chitotriosidase activity using Dried Blood Spots on Filter Paper (DBS-FP) to identify individuals at high risk for GD in high-risk populations such as that of Tabuleiro do Norte, a small town in Northeastern Brazil. Methods. Between June 1, 2007 and May 31, 2008, 740 consented residents and descendants of traditional families from Tabuleiro do Norte were submitted to screening with DBS-FP. Subjects with GBA activity <2.19 nmol/h/mL were referred to analysis of GBA and chitotriosidase activity in peripheral leukocytes and in plasma, respectively. Subjects at highest risk for GD (GBA activity in peripheral leukocytes <5.6 nmol/h/mg protein) were submitted to molecular analysis to confirm diagnosis. Results. Screening with DBS-FP identified 135 subjects (18.2%) with GBA activity <2.19 nmol/h/mL, 131 of whom remained in the study. In 10 of these (7.6%), GBA activity in leukocytes was 2.6 5.5 nmol/h/mg protein. Subsequent molecular analysis confirmed 6 cases of heterozygosity and 4 normals for GD. Conclusion. DBS-FP assay was shown to be an effective initial GD screening strategy for high-prevalence populations in developing regions. Diagnosis could not be established from GBA activity in leukocytes alone, but required confirmation with molecular analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]