979 resultados para Condensed matter
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We have performed ab initio molecular dynamics simulations to generate an atomic structure model of amorphous hafnium oxide (a-HfO(2)) via a melt-and-quench scheme. This structure is analyzed via bond-angle and partial pair distribution functions. These results give a Hf-O average nearest-neighbor distance of 2.2 angstrom, which should be compared to the bulk value, which ranges from 1.96 to 2.54 angstrom. We have also investigated the neutral O vacancy and a substitutional Si impurity for various sites, as well as the amorphous phase of Hf(1-x)Si(x)O(2) for x=0.25, 0375, and 0.5.
Resumo:
We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.
Resumo:
Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.
Resumo:
NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.
Resumo:
In this work, we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of acrylic acid (AAc) and vinylacetic acid (VAA) on the silicon surface. Our total energy calculations support the proposed experimental process, as it indicates that the chemisorption of the molecule is as follows: The gas phase VAA (AAc) adsorbs molecularly to the electrophilic surface Si atom and then dissociates into H(2)C = CH - COO and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. The activation energy for both processes correspond to thermal activations that are smaller than the usual growth temperature. In addition, the electronic structure, calculated vibrational modes, and theoretical scanning tunneling microscopy images are discussed, with a view to contribute to further experimental investigations.
Resumo:
At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).
Resumo:
The band-edge optical absorption in EuTe is studied in the framework of the 5d conduction band atomic model. Both relaxed antiferromagnetic order, and ferromagnetic order induced by an external magnetic field, were analyzed. For ferromagnetic arrangement, the absorption is characterized by a hugely dichroic doublet of narrow lines. In the antiferromagnetic order, the spectrum is blueshifted, becomes much broader and weaker, and dichroism is suppressed. These results are in excellent qualitative and quantitative agreement with experimental observations on EuTe and EuSe published by us previously [Phys. Rev. B 72, 155337 (2005)]. The possibility of inducing ferromagnetic order by illuminating the material at photon energies resonant with the band gap is also discussed.
Resumo:
The adsorption of atomic and molecular hydrogen on armchair and zigzag boron carbonitride nanotubes is investigated within the ab initio density functional theory. The adsorption of atomic H on the BC(2)N nanotubes presents properties which are promising for nanoelectronic applications. Depending on the adsorption site for the H, the Fermi energy moves toward the bottom of the conduction band or toward the top of the valence band, leading the system to exhibit donor or acceptor characteristics, respectively. The H(2) molecules are physisorbed on the BC(2)N surface for both chiralities. The binding energies for the H(2) molecules are slightly dependent on the adsorption site, and they are near to the range to work as a hydrogen storage medium.
Resumo:
We demonstrate that the short-range spin correlator < S(i)center dot S(j)>, a fundamental measure of the interaction between adjacent spins, can be directly measured in certain insulating magnets. We present magnetostriction data for the insulating organic compound NiCl(2)-4SC(NH(2))(2), and show that the magnetostriction as a function of field is proportional to the dominant short-range spin correlator. Furthermore, the constant of proportionality between the magnetostriction and the spin correlator gives information about the spin-lattice interaction. Combining these results with the measured Young's modulus, we are able to extract dJ/dz, the dependence of the superexchange constant J on the Ni interionic distance z.
Resumo:
The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.
Resumo:
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.
Resumo:
High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.
Resumo:
We adopt the Dirac model for quasiparticles in graphene and calculate the finite-temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature, the Casimir interaction in such system is just one-half of that for two ideal conductors separated by the same distance. In this limit, a single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while the contribution of the TM mode saturates at the ideal-metal value. The behavior of the Casimir interaction for intermediate temperatures and separations accessible in experiments is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine-structure constant and the Fermi velocity.
Resumo:
High-resolution synchrotron x-ray diffraction measurements were performed on single crystalline and powder samples of BiMn(2)O(5). A linear temperature dependence of the unit cell volume was found between T(N)=38 and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between T(*)similar to 65 K and T(N), all lattice parameters showed incipient magnetoelastic effects, due to short-range spin correlations. An anisotropic strain along the a direction was also observed below T(*). Below T(N), a relatively large contraction of the a parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. On the other hand, the more complex behaviors found for b and c suggest additional magnetic transitions below T(N) and perhaps higher-order terms in the spin Hamiltonian. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above T(N) presented structural phase coexistence below T(N), indicating a close competition amongst distinct magnetostructural states in this compound.