999 resultados para Characterization of porcelainized stoneware files
Resumo:
In this work, Ti(92)B(8) alloy was processed via rapid solidification (splat-cooling) and then heat-treated at 700 degrees C and 1000 degrees C. A careful microstructural characterization indicated that, after rapid solidification, a very fine two-phase microstructure was produced with no significant saturation of B in alpha/beta Ti. There was no indication of amorphous formation in the rapidly solidified splats. Both alpha Ti and TiB were observed in the microstructures of the splats after heat-treatment at 700 degrees C and 1000 degrees C, confirming the stability of the alpha Ti+TiB two-phase region in this temperature range. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Accurate knowledge of several Me-B (Me - Metal) phase diagrams are important to evaluate higher order systems such as Me-Si-B ternaries. This work presents results of microstructural characterization of as-cast Cr-B alloys which are significant to assess the liquid compositions associated to most of the invariant reactions of this system. Alloys of different compositions were prepared by arc melting pure Cr and B pressed powder mixtures under argon atmosphere in a water-cooled copper crucible with non-consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using back-scattered electron (BSE) image mode and X-ray diffraction (XRD). In general, a good agreement was found between our data and those from the currently accepted Cr-B phase diagram. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This work presents results of microstructural characterization of as-cast Cr-Si alloys. The alloys were prepared by arc melting pure Cr (min. 99.996%) and Si (min. 99.998%) powder mixtures under argon atmosphere in a water-cooled copper crucible with nonconsumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using the back-scattered electron (BSE) image mode and X-ray diffraction (XRD). The results confirm the currently accepted Cr-Si phase diagram in terms of the invariant reactions and solid phases present in this system. Small corrections are proposed for the compositions of the liquid phase in the following reactions: (i) L double left right arrow Cr-ss+Cr3Si, from 15 to 16 at.% Si; (ii) L+alpha Cr5Si3 double left right arrow CrSi, from 51 at.% Si to slightly above 53 at.% Si; (iii) L double left right arrow CrSi+CrSi2, from 56 to slightly above 57 at.% Si; (iv) L double left right arrow CrSi2+Si, from 82 to slightly above 85 at.% Si. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The electrodeposition of nickel based composites is been performed in order to improve properties of nickel layers, such as hardness, wear resistance, lubrication, corrosion resistance and catalytic activity. In the present work Nb powders (20 mu m average size) and Ni were codeposited on 1020 carbon steel by galvanostatic electrolysis of Watts bath, using 10, 20 and 40 mA/cm(2) cathodic current density and 240, 400 and 550 rpm electrolyte stirring rate. The morphology and texture of the coatings, Nb incorporated volume fraction, microhardness, adhesion to the substrate and corrosion behavior were evaluated. The Ni-Nb composite layers presented a rough morphology with randomly oriented Ni grains, whereas pure Ni coatings were smooth and showed highly preferred orientation in the [110] or [100] direction. The volume fraction of Nb in the composites determined by image analysis ranged from 8.5 to 19%. The 400 rpm stirring rate led to the highest Nb content (16 to 19016) for all current densities investigated The microhardness of the composite layers was higher than that of pure Ni coatings due to refining of Ni grains induced by incoporation of Nb particles. The adhesion of the coatings estimated qualitatively by bend test was found satisfactory. The Ni-Nb composites presented lower corrosion rate than Ni coatings in both 3% NaCl and 20% H2SO4 solutions.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.
Resumo:
Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.
Resumo:
Copper coatings containing well-distributed Nb particles were obtained by co-electrodeposition in an acidic sulfate bath. Nb particle concentration in the bath was the most significant factor for the incorporation of Nb particles in copper, followed by stirring rate, whereas current density presented low significance. High Nb particle concentration and low stirring rate led to a higher incorporated Nb particle content. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to copper matrix grain refinement and increased with the increase of both current density and incorporated Nb particle volume fraction. The corrosion resistance of Cu-Nb composites in 0.5 wt.% H(2)SO(4) solution at room temperature was higher than that of pure copper and increased with the increase of the Nb content. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main aim of this work was to produce fruit wines from pulp of gabiroba, cacao, umbu, cupuassu and jaboticaba and characterize them using gas chromatography-mass spectrometry for determination of minor compounds and gas chromatography-flame ionization detection for major compounds. Ninety-nine compounds (C(6) compounds, alcohols, monoterpenic alcohols, monoterpenic oxides, ethyl esters, acetates, volatile phenols, acids, carbonyl compounds, sulfur compounds and sugars) were identified in fruit wines. The typical composition for each fruit wine was evidenced by principal component analysis and Tukey test. The yeast UFLA CA 1162 was efficient in the fermentation of the fruit pulp used in this work. The identification and quantification of the compounds allowed a good characterization of the fruit wines. With our results, we conclude that the use of tropical fruits in the production of fruit wines is a viable alternative that allows the use of harvest surpluses and other underused fruits, resulting in the introduction of new products into the market. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A niobium single crystal was subjected to equal channel angular pressing (ECAP) at room temperature after orienting the crystal such that [1 -1 -1] ayen ND, [0 1 -1] ayen ED, and [-2 -1 -1] ayen TD. Electron backscatter diffraction (EBSD) was used to characterize the microstructures both on the transverse and the longitudinal sections of the deformed sample. After one pass of ECAP the single crystal exhibits a group of homogeneously distributed large misorientation sheets and a well formed cell structure in the matrix. The traces of the large misorientation sheets match very well with the most favorably oriented slip plane and one of the slip directions is macroscopically aligned with the simple shear plane. The lattice rotation during deformation was quantitatively estimated through comparison of the orientations parallel to three macroscopic axes before and after deformation. An effort has been made to link the microstructure with the initial crystal orientation. Collinear slip systems are believed to be activated during deformation. The full constraints Taylor model was used to simulate the orientation evolution during ECAP. The result matched only partially with the experimental observation.
Resumo:
In this work the Mn(5)Si(3) and Mn(5)SiB(2) phases were produced via arc melting and heat treatment at 1000 degrees C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn(5)Si(3) and near single-phase Mn(5)SiB(2) microstructures. The magnetic behavior of the Mn(5)Si(3) phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn(5)SiB(2) phase shows a ferromagnetic behavior presenting a saturation magnetization M(s) of about 5.35 x 10(5) A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.
Resumo:
Silicon nitride particles were incorporated to electrolytic copper by co-electrodeposition in acidic sulfate bath, aiming the improvement of its mechanical resistance. Smooth deposits containing well-distributed silicon nitride particles were obtained. The current density did not show significant influence on incorporated particle volume fraction, whereas the variation of particle concentration in the bath had a more pronounced effect. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions and increased with the increase of incorporated particle volume fraction. The microhardness of composites also increased with the increase of current density due to copper matrix grain refining. The composite coatings were slightly more corrosion resistant than pure copper deposits in 3.5% NaCl solutions.
Resumo:
Smooth copper coatings containing well-distributed silicon nitride particles were obtained by co-electrodeposition in acidic sulfate bath. The cathodic current density did not show significant influence on incorporated particle volume fraction, whereas the increase of particle concentration in the bath led to its decrease. The increase of stirring rate increased the amount of embedded particles. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to dispersion-strengthening and copper matrix grain refinement and increased with the increase of incorporated particle volume fraction. The microhardness of composites also increased with the increase of current density due to copper matrix grain refining. The composite coatings presented higher strength but lower ductility than pure copper layers. Pure copper and composite coatings showed the same corrosion resistance in 0.5 wt.% H(2)SO(4) solution at room temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Silicon nitride ceramics were sintered using Y(2)O(3)-Al(2)O(3) or E(2)O(3)-Al(2)O(3) (E(2)O(3) denotes a mixed oxide Of Y(2)O(3) and rare-earth oxides) as sintering additives. The intergranular phases formed after sintering was investigated using high-resolution X-ray diffraction (HRXRD). The use of synchrotron radiation enabled high angular resolution and a high signal to background ratio. Besides the appearance Of beta-Si(3)N(4) phase the intergranular phases Y(3)Al(5)O(12) (YAG) and Y(2)SiO(5) were identified in both samples. The refinement of the structural parameters by the Rietveld method indicated similar crystalline structure Of beta-Si(3)N(4) for both systems used as sintering additive. On the other hand, the intergranular phases Y(3)Al(5)O(12) and Y(2)SiO(5) shown a decrease of the lattice parameters, when E(2)O(3) was used as additive, indicating the formation of solid solutions of E(3)Al(5)O(12) and E(2)SiO(5), respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.