264 resultados para CaCl2
Resumo:
Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.1016/j.copbio.2015.02.010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.1039/C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.1111/1462-2920.12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.
Resumo:
This investigation focused on the development, test and validation of methodologies for mercury fractionation and speciation in soil and sediment. After an exhaustive review of the literature, several methods were chosen and tested in well characterised soil and sediment samples. Sequential extraction procedures that divide mercury fractions according to their mobility and potential availability in the environment were investigated. The efficiency of different solvents for fractionation of mercury was evaluated, as well as the adequacy of different analytical instruments for quantification of mercury in the extracts. Kinetic experiments to establish the equilibrium time for mercury release from soil or sediment were also performed. It was found that in the studied areas, only a very small percentage of mercury is present as mobile species and that mobility is associated to higher aluminium and manganese contents, and that high contents of organic matter and sulfur result in mercury tightly bound to the matrix. Sandy soils tend to release mercury faster that clayey soils, and therefore, texture of soil or sediment has a strong influence on the mobility of mercury. It was also understood that analytical techniques for quantification of mercury need to be further developed, with lower quantification limits, particularly for mercury quantification of less concentrated fractions: water-soluble e exchangeable. Although the results provided a better understanding of the distribution of mercury in the sample, the complexity of the procedure limits its applicability and robustness. A proficiency-testing scheme targeting total mercury determination in soil, sediment, fish and human hair was organised in order to evaluate the consistency of results obtained by different laboratories, applying their routine methods to the same test samples. Additionally, single extractions by 1 mol L-1 ammonium acetate solution, 0.1 mol L-1 HCl and 0.1 mol L-1 CaCl2, as well as extraction of the organometallic fraction were proposed for soil; the last was also suggested for sediment and fish. This study was important to update the knowledge on analytical techniques that are being used for mercury quantification, the associated problems and sources of error, and to improve and standardize mercury extraction techniques, as well as to implement effective strategies for quality control in mercury determination. A different, “non chemical-like” method for mercury species identification was developed, optimised and validated, based on the thermo-desorption of the different mercury species. Compared to conventional extraction procedures, this method has advantages: it requires little to no sample treatment; a complete identification of species present is obtained in less than two hours; mercury losses are almost neglectable; can be considered “clean”, as no residues are produced; the worldwide comparison of results obtained is easier and reliable, an important step towards the validation of the method. Therefore, the main deliverables of this PhD thesis are an improved knowledge on analytical procedures for identification and quantification of mercury species in soils and sediments, as well as a better understanding of the factors controlling the behaviour of mercury in these matrices.
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2008
Resumo:
Dissertação de mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2014
Resumo:
Dissertação de Mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2016
Resumo:
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal- 0.77% (w/v); (NH4)2SO4-0.1 M; KH2PO4-0.05 M; rice bran oil-2% (v/v); CaCl2-0.05 M; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35 8C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6- fold increase in lipase production was achieved. Partial purification by (NH4)2SO4 precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40 8C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.
Resumo:
Protease inhibitors have great demand in medicine and biotechnology. We report here the purification and characterization of a protease inhibitor isolated from mature leaf extract of Moringa oleifera that showed maximum inhibitor activity. The protease inhibitor was purified to 41.4-fold by Sephadex G75 and its molecular mass was calculated as 23,600 Da. Inhibitory activity was confirmed by dot-blot and reverse zymogram analyses. Glycine, glutamic acid, alanine, proline and aspartic acid were found as the major amino acids of the inhibitor protein. Maximal activity was recorded at pH 7 and at 40 ◦C. The inhibitor was stable over pH 5–10; and at 50 ◦C for 2 h. Thermostability was promoted by CaCl2, BSA and sucrose. Addition of Zn2+ and Mg2+, SDS, dithiothreitol and -mercaptoethanol enhanced inhibitory activity, while DMSO and H2O2 affected inhibitory activity. Modification of amino acids at the catalytic site by PMSF and DEPC led to an enhancement in the inhibitory activity. Stoichiometry of trypsin–protease inhibitor interaction was 1:1.5 and 0.6 nM of inhibitor effected 50% inhibition. The low Ki value (1.5 nM) obtained indicated scope for utilization of M. oliefera protease inhibitor against serine proteases
Resumo:
L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for L-glutaminase production were incorporated into the continuous production studies. Beads with 12 × 108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of L-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilizedspores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of L-glutaminase
Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10
Resumo:
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.
Resumo:
As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.
Resumo:
A pot experiment was conducted to test the hypothesis that decomposition of organic matter in sewage sludge and the consequent formation of dissolved organic compounds (DOC) would lead to an increase in the bioavailability of the heavy metals. Two Brown Earth soils, one with clayey loam texture (CL) and the other a loamy sand (LS) were mixed with sewage sludge at rates equivalent to 0, 10 and 50 1 dry sludge ha(-1) and the pots were sown with ryegrass (Lolium perenne L.). The organic matter content and heavy metal availability assessed with soil extractions with 0.05 M CaCl2 were monitored over a residual time of two years, while plant uptake over one year, after addition of the sludge. It was found that the concentrations of Cd and Ni in both the ryegrass and the soil extracts increased slightly but significantly during the first year. In most cases, this increase was most evident especially at the higher sludge application rate (50 t ha(-1)). However, in the second year metal availability reached a plateau. Zinc concentrations in the ryegrass did not show an increase but the CaCl2 extracts increased during the first year. In contrast, organic matter content decreased rapidly in the first months of the first year and much more slowly in the second (total decrease of 16%). The concentrations of DOC increased significantly in the more organic rich CL soil in the course of two years. The pattern followed by the decomposition of organic matter with time and the production of DOC may provide at least a partial explanation for trend towards increased metal availability.
Resumo:
The OECD 14 d earthworm acute toxicity test was used to determine the toxicity of copper added as copper nitrate (Cu(NO3)(2)), copper sulphate (CuSO4) and malachite (Cu-2(OH)(2)(CO3)) to Eisenia fetida Savigny. Cu(NO3)(2), and CuSO4 were applied in both an aqueous (aq) and solid (s) form, Cu-2(OH)(2)(CO3) was added as a solid. Soil solution was extracted by centrifugation, and analysed for copper. Two extractants [0.01 M CaCl2 and 0.005 M diethylenetriminpentaacetic acid (DTPA)] were used as a proxy of the bioavailable copper fraction in the soil. For bulk soil copper content the calculated copper toxicity decreased in the order nitrate > sulphide > carbonate, the same order as decreasing solubility of the metal compounds. For Cu(NO3)(2) and CuSO4, the LC50s obtained were not significantly different when the compound was added in solution or solid form. There was a significant correlation between the soil solution copper concentration and the percentage earthworm mortality for all 3 copper compounds (P less than or equal to 0.05) indicating that the soil pore water copper concentration is important for determining copper availability and toxicity to E. fetida. In soil avoidance tests the earthworms avoided the soils treated with Cu(NO3)(2) (aq and s) and CuSO4 (aq and s), at all concentrations used (110-8750 mug Cu g(-1), and 600-8750 mug Cu g(-1) respectively). In soils treated with Cu-2(OH2)CO3, avoidance behaviour was exhibited at all concentrations greater than or equal to3500 mug Cu g(-1). There was no significant correlation between the copper extracted by either CaCl2 or DTPA and percentage mortality. These two extractants are therefore not useful indicators of copper availability and toxicity to E. fetida.
Resumo:
In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pulses of potassium (K+) applied to columns of repacked calcium (Ca2+) saturated soil were leached with distilled water or calcium chloride (CaCl2) solutions of various concentrations at a rate of 12 mm h(-1). With increased Ca2+ concentration, the rate of movement of K+ increased, as did the concentration of K+ in the displaced pulse, which was less dispersed. The movement of K+ in calcite-amended soil leached with water was at a similar rate to that of the untreated soil leached with 1 mM CaCl2, and in soil containing gypsum, movement was similar to that leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 0.4 and 15 mM respectively the expected values for the dissolution of the two amendments. Soil containing native K+ was leached with distilled water or CaCl2 solutions. The amount of K+ leached increased as Ca2+ concentration increased, with up to 34% of the exchangeable K+ being removed in five pore volumes of 15 mM CaCl2. Soil amended with calcite and leached with water lost K+ at a rate between that for leaching the unamended soil with 1 mM CaCl2 and that with water. Soil containing gypsum and leached with water lost K+ at a similar rate to unamended soil leached with 15 mM CaCl2. The presence of Ca2+ in irrigation water and of soil minerals able to release Ca2+ are of importance in determining the amounts of K+ leached from soils. The LEACHM model predicted approximately the displacement of K+, and was more accurate with higher concentrations of displacing solution. The shortcomings of this model are its inability to account for rate-controlled processes and the assumption that K+:Ca2+ exchange during leaching can be described using a constant adsorption coefficient. As a result, the pulse is predicted to appear a little earlier and the following edge has less of a tail than chat measured. In practical agriculture, the model will be more useful in soils containing gypsum or leached with saline water than in either calcareous or non-calcareous soils leached with rainwater.
Resumo:
There is increasing concern about soil enrichment with K+ and subsequent potential losses following long-term application of poor quality water to agricultural land. Different models are increasingly being used for predicting or analyzing water flow and chemical transport in soils and groundwater. The convective-dispersive equation (CDE) and the convective log-normal transfer function (CLT) models were fitted to the potassium (K+) leaching data. The CDE and CLT models produced equivalent goodness of fit. Simulated breakthrough curves for a range of CaCl2 concentration based on parameters of 15 mmol l(-1) CaCl2 were characterised by an early peak position associated with higher K+ concentration as the CaCl2 concentration used in leaching experiments decreased. In another method, the parameters estimated from 15 mmol l(-1) CaCl2 solution were used for all other CaCl2 concentrations, and the best value of retardation factor (R) was optimised for each data set. A better prediction was found. With decreasing CaCl2 concentration the value of R is required to be more than that measured (except for 10 mmol l(-1) CaCl2), if the estimated parameters of 15 mmol l(-1) CaCl2 are used. The two models suffer from the fact that they need to be calibrated against a data set, and some of their parameters are not measurable and cannot be determined independently.