980 resultados para COLLECTION OF EXTRATERRESTRIAL PARTICLES FROM STRATOSPHERE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper reports on time-resolved emission and excitation spectra measurement studies of Gd2SiO5:Ce3+ in powder or pellet samples, from spherical particles, in order to assign the Ce3+ ion transitions into two different symmetry sites. Samples were obtained from solid-state reaction of the spherical particles oxides, SiO2 and Gd2O3:Ce3+. From time-resolved spectroscopy measurements Ce3+ ion transitions occupying the two different gadolinium crystallographic sites in Gd2SiO5 were separated and assigned. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Snake venom PLA(2)s have been extensively studied due to their role in mediating and disrupting physiological processes such as coagulation, platelet aggregation and myotoxicity. The Ca2+ ion bound to the putative calcium-binding loop is essential for hydrolytic activity. We report the crystallization in the presence and absence of Ca2+ and X-ray diffraction data collection at 1.60 Angstrom (with Ca2+) and 1.36 Angstrom (without Ca2+) of an Asp49 PLA(2) from Bothrops jararacussu venom. The crystals belong to orthorhombic space group C222(1). Initial refinement and electron density analysis indicate significant conformational. changes upon Ca2+ binding. (C) 2004 Elsevier B.V. All fights reserved.
Resumo:
A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic theological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.
Resumo:
The aim of this work was the development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The proposed low costs structures are similar to macroscopic wastewater treatment systems, named baffles, and allow disassemble. They were simulated using FEMLAB 3.2b package and manufactured in acrylic with conventional tools. Tests for retention or selection of particles in water or air and viscous fluids in water were carried out. Either in air or water particles with 50 mu m diameter will be retained but not with 13 mu m diameter. In aqueous flow, it is also possible the retention of viscous samples, such as silicone 350 cSt. The simulated results showed good agreement with experimental measurements. These miniaturized structures can be useful in sample pretreatment for chemical analysis and microorganism manipulation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study investigated the susceptibility of 198 clinical isolates of Candida species against caspofungin, amphotericin B, itraconazole, and fluconazole. Study Design: Suspensions of the microorganisms were spread on Roswell Park Memorial Institute (RPMI) agar plates. Etest strips were placed on the plates, and the minimal inhibitory concentration (MIC) was read after incubation (48 h at 37°C). Data were analyzed by a factorial analysis of variance and a 2 × 2 post hoc test (α = .05). Results: C glabrata showed the highest MIC values (P < .001) against caspofungin, itraconazole, and fluconazole. For amphotericin B, the MIC values of C tropicalis and C glabrata (P = .0521) were higher than those of C albicans (P < .001). Itraconazole was the least effective antifungal; 93.3% of the C glabrata isolates, 3.3% of the C albicans, and 1.3% of the C tropicalis were resistant. All microorganisms were susceptible to caspofungin and amphotericin B. Conclusions: Caspofungin and amphotericin B should be recommended as an effective alternative for the management of oral Candida infections when treatment with topical or other systemic drugs has definitely failed. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ice clouds have a strong effect on the Earth-atmosphere radiative energy balance, on the distribution of condensable gases in the atmosphere, as well as on the chemical composition of the air. The ice particles in these clouds can take on a variety of shapes which makes the description of the cloud microphysical properties more difficult. In the tropical upper troposphere/lower stratosphere (UTLS), a region where ice cloud abundance is relatively high, different types of ice clouds can be observed. However, in situ measurements are rare due to the high altitude of these clouds and the few available research aircraft, only three worldwide, that can fly at such altitudes.rnThis work focuses on in situ measurements of the tropical UTLS clouds performedrnwith a Cloud Imaging Probe (CIP) and a Forward Scattering Spectrometer Probern(FSSP-100), whereof the CIP is the key instrument of this thesis. The CIP is anrnairborne in situ instrument that obtains two-dimensional shadow images of cloud particles. Several cloud microphysical parameters can be derived from these measurements, e.g. number concentrations and size distributions. In order to obtain a high quality data set, a careful image analysis and several corrections need to be applied to the CIP observations. These methods are described in detail.rnMeasurements within the tropical UTLS have been performed during two campaigns:rnSCOUT-O3, 2005 in Northern Australia and SCOUT-AMMA, 2006 inWest Africa. Thernobtained data set includes first observations of subvisible cirrus clouds over a continental area and observations of the anvils of deep convective clouds. The latter can be further divided into clouds in mesoscale convective system outflows of different ages and clouds in overshooting cloud turrets that even penetrated the stratosphere. The microphysical properties of these three cloud types are discussed in detail. Furthermore, the vertical structure of the ice clouds in the UTLS is investigated. The values of the microphysical parameters were found to decrease with increasing altitude in the upper troposphere. Particle numbers and maximum sizes were also decreasing with increasing age of the outflow clouds. Further differences between the deep convective clouds and subvisible cirrus were found in the particle morphology as well as in the ratio of the observed aerosol particles to cloud particles which indicates that the different freezing processes (deposition, contact, immersion freezing) play different roles in the formation of the respective clouds. For the achievementrnof a better microphysical characterisation and description numerical fits have been adjusted onto the cloud particle size distributions of the subvisible cirrus as well as on the size distributions of the clouds at different altitudes in the UTLS.
Resumo:
In previous studies, it was shown that there is a gunshot-related transport of skin particles and microorganisms from the entrance region into the depth of the bullet path. The present study deals with the question of whether gunshots may also cause a retrograde transport of skin particles and microorganisms from the bullet exit region back into the bullet path. For this purpose, we used a composite model consisting of rectangular gelatin blocks and pig skin. The skin pieces were firmly attached to the gelatin blocks on the side where the bullet was to exit. Prior to the test shots, the outer surface of the pig skin was contaminated with a thin layer of a defined bacterial suspension. After drying the skin, test shots were fired from a distance of 10 m using cartridges calibre .38 spec. with different bullet types. Subsequent analyses showed that in all shots with full penetration of the composite model, the bullet path contained displaced skin particles and microorganisms from the skin surface at the exit site. These could be regularly detected in the distal 6-8 cm of the track, occasionally up to a distance of 18 cm from the exit hole. The distribution of skin particles and microorganisms is presented and the possible mechanism of this retrograde transport is discussed.
Resumo:
Analyzing “nuggety” gold samples commonly produces erratic fire assay results, due to random inclusion or exclusion of coarse gold in analytical samples. Preconcentrating gold samples might allow the nuggets to be concentrated and fire assayed separately. In this investigation synthetic gold samples were made using similar density tungsten powder and silica, and were preconcentrated using two approaches: an air jig and an air classifier. Current analytical gold sampling method is time and labor intensive and our aim is to design a set-up for rapid testing. It was observed that the preliminary air classifier design showed more promise than the air jig in terms of control over mineral recovery and preconcentrating bulk ore sub-samples. Hence the air classifier was modified with the goal of producing 10-30 grams samples aiming to capture all of the high density metallic particles, tungsten in this case. Effects of air velocity and feed rate on the recovery of tungsten from synthetic tungsten-silica mixtures were studied. The air classifier achieved optimal high density metal recovery of 97.7% at an air velocity of 0.72 m/s and feed rate of 160 g/min. Effects of density on classification were investigated by using iron as the dense metal instead of tungsten and the recovery was seen to drop from 96.13% to 20.82%. Preliminary investigations suggest that preconcentration of gold samples is feasible using the laboratory designed air classifier.
Resumo:
by Lucien Wolf. Transl. from the Spanish and ed. with an introd. and notes