Scaling invariance for the escape of particles from a periodically corrugated waveguide


Autoria(s): Leonel, Edson Denis; da Costa, Diogo R.; Dettmann, Carl P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

09/01/2012

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.

Formato

421-425

Identificador

http://dx.doi.org/10.1016/j.physleta.2011.11.027

Physics Letters A. Amsterdam: Elsevier B.V., v. 376, n. 4, p. 421-425, 2012.

0375-9601

http://hdl.handle.net/11449/24894

10.1016/j.physleta.2011.11.027

WOS:000299607300038

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Physics Letters A

Direitos

closedAccess

Palavras-Chave #Corrugated waveguide #Two-dimensional mapping #Transport properties
Tipo

info:eu-repo/semantics/article