993 resultados para CIRCUIT ANALYSIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study analyzes an accident in which two maintenance workers suffered severe burns while replacing a circuit breaker panel in a steel mill, following model of analysis and prevention of accidents (MAPA) developed with the objective of enlarging the perimeter of interventions and contributing to deconstruction of blame attribution practices. The study was based on materials produced by a health service team in an in-depth analysis of the accident. The analysis shows that decisions related to system modernization were taken without considering their implications in maintenance scheduling and creating conflicts of priorities and of interests between production and safety; and also reveals that the lack of a systemic perspective in safety management was its principal failure. To explain the accident as merely non-fulfillment of idealized formal safety rules feeds practices of blame attribution supported by alibi norms and inhibits possible prevention. In contrast, accident analyses undertaken in worker health surveillance services show potential to reveal origins of these events incubated in the history of the system ignored in practices guided by the traditional paradigm.
Resumo:
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A careful analysis of the impedance response of SnO2 thick films under vacuum and air atmosphere is reported in the present work. The AC electrical resistance was analyzed and it was shown that it is highly frequency dependent. Different models and its equivalent circuit representation were proposed and carefully analyzed based on the microstructure features of the device. Basically, an interpretation of the frequency dependent resistance was proposed based on the fact that different grains characteristics and junctions exist. These different grains and junctions are the main source of resistance dependent feature. An equivalent circuit model, considering different grain sizes associated with different grain boundary junctions characteristics, was introduced so that a consistent interpretation of the results was possible.
Resumo:
In this work a detailed modeling of three-phase distribution transformers aimed at complementing well-known approaches is presented. Thus, incidence of angular displacement and tapping is taken into account in the proposed models, considering both actual values and per unit. The analysis is based on minimal data requirement: solely short-circuit admittance is needed since three-phase transformers are treated as non-magnetically-coupled single-phase transformers. In order to support the proposed methodology, results obtained through laboratory tests are presented.
Resumo:
A simple and inexpensive way to fabricate arrays of gold microelectrodes is proposed. Integrated circuit chips are sawed through their middle, normal to the longest axis, leading to destruction of the silicon circuit and rupture of the gold wires that interconnect it with the external terminals. Polishing the resulting rough surface converts the tips of the wires embedded in the chip halves into arrays of gold microdisks of about 25 mu m diameter. The number of active microelectrodes (MEs), of an array depends on the number of pins in the chip, n, being typically (n/2)-4. These MEs can be used individually or externally interconnected in any combination. X-ray images of the chips and micrographs of the resulting surface of the polished arrays have revealed variable distances between neighbor MEs, which are, however, larger than 10 times the radius of the disks. This feature of the MEs prevents diffusional cross-talk between electrodes. The use of these microdisk electrodes for analytical purposes exhibits sigmoidal voltammograms, and chronoamperometric experiments confirm the nonlinear i vs. t(1/2) plots, typical for processes where radial diffusion prevails. Satisfactory uniformity was observed for the response of each electrode of an array, indicating similarity of geometry and disk areas. The potentialities of these MEs were demonstrated by the determination of cadmium at ppb levels using square wave voltammetry with preconcentration. Due to the relative ease with which these MEs can be manufactured and their good performance in (chemical) analysis, wide applications in electrochemistry and electroanalysis is envisioned.
Resumo:
It has been used a new image analysis method, based on segmentation by shape parameters, for pits morphology examination from Al 2024 aluminum-copper alloy in chloride aqueous solution. Corrosion behavior of this alloys in naturally aerated 3.5% NaCl solution has been investigated through open circuit potential measurements. Afterwards, pits have been characterized by image analysis taking density and size measurements right from corroded surfaces. Morphological investigation has been conducted for profiles, cut orthogonally from mean surface planes, and observed through light microscopy. Image analysis data could demonstrate that pits are wider than deep, evoluting for conical, quasi-conical or irregular shapes. Most pits have presented a quasi-conical morphology, but the wider ones have evoluted to an irregular shape influenced by sub-surface microstructure. Image analysis based on shape segmentation could enhance the differences on morphological behavior. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The construction of a flow-through cell incorporating an array of gold microelectrodes is described and its application to flow injection analysis with amperometric detection is presented, Simple modification of almost any conventional integrated circuit chip, used as an inexpensive source of pre-assembled gold micro-wires, leads to the rapid and successful preparation of arrays of 8-48 elements, the polymeric encapsulation material from the top face of the chip is removed by abrasion until the gold micro-mires (used to interconnect the silicon circuit to the external contact pins of the chip) are disrupted and their transversal (elliptical) sections become exposed. Once polished, the flat and smooth top surface of the gold microelectrode-array chip (MEAC) is provided with a spacer and fitted under pressure against an acrylic block with the reference and auxiliary electrodes, to form the electrochemical (thin-layer) flow cell, while the contact pins are plugged into a standard IC socket, This design ensures autonomous electric contact with each electrode and allows fast dismantling for polishing or substitution, the performance of flow cells with MEACs was investigated utilizing the technique of reverse pulse amperometry without oxygen removal, A method was established for the determination of the copper concentration in sugar cane spirit, regulated by law for beverages, Samples from industrial producers and small-scale (alembic) brewers were compared, With a 24 MEAC, a detection limit of 30 mu g I-l of copper (4.7 x 10(-7) mol l(-1) of Cu-II for 100 mu l injections) was calculated, Routine operation was established at a frequency of 60-90 determinations per hour, Intercomparison with atomic absorption spectrometric determinations resulted in excellent agreement.
Resumo:
Three-Phase Induction Motors (TIM) and Arc Welding Machines (AWM) are loads of special behavior widely used in industrial and commercial installations, and therefore may contribute significantly to the deterioration of the quality of energy supplied by utilities. This paper proposes a modeling in constant power of the unbalanced TIM starting using Genetic Algorithm (GA) and AWM short-circuit based on their statics characteristics curves. The proposed models are compared with the conventional models in the literature. The results showed the good performance of the proposed models, allowing a more precise analysis of the real requests of these loads.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.
Resumo:
This paper adresses the problem on processing biological data such as cardiac beats, audio and ultrasonic range, calculating wavelet coefficients in real time, with processor clock running at frequency of present ASIC's and FPGA. The Paralell Filter Architecture for DWT has been improved, calculating wavelet coefficients in real time with hardware reduced to 60%. The new architecture, which also processes IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant multipliers. Including series memory register banks, one integrated circuit Signal Analyzer, ultrasonic range, is presented.