1000 resultados para Bone Crest
Resumo:
Introdução: Uma adequada planificação é condição sine qua non para o êxito do tratamento com implantes. No entanto, nem sempre a colocação dos implantes na posição tridimensional ideal é, logo à partida, viável. Neste contexto, a correção dos colapsos da crista óssea com tecidos duros assume especial importância. Objetivos: O objetivo desta revisão narrativa é avaliar a eficácia dos diversos procedimentos existentes para aumento do rebordo com tecidos duros, de forma a facilitar a escolha do tratamento ideal. Materiais e Métodos: Pesquisou-se nas bases de dados MEDLINE, B-on e Google Académico. As palavras-chave utilizadas foram: “guided bone regeneration”, “ridge augmentation”, “seibert classification”, “alveolar bone splitting”, “horizontal bone augmentation” e “vertical bone augmentation”. Deu-se especial ênfase a revisões sistemáticas e meta-análises. A pesquisa foi limitada a artigos publicados em inglês, espanhol e em português até abril de 2016. Foram ainda consultados os livros “Tratado de Periodontia Clínica e Implantologia Oral” de Lindhe et al. (2005), “Implantes Dentais Contemporâneos” de Misch et al. (2009) e “Reabilitação com implantes endo-ósseos” de Alcoforado et al. (2008). Resultados: De um modo geral, todos os procedimentos analisados obtiveram altas taxas de sobrevivência aquando da reabilitação com implantes. No entanto, não houve diferenças significativas entre as diversas técnicas que possam levar a uma conclusão relevante sobre qual a melhor técnica a utilizar para este tipo de procedimento. Conclusão: Há evidências insuficientes para sugerir qual a técnica que deve ser preferida para o aumento de rebordo com tecidos duros, pelo que mais estudos são necessários.
Resumo:
Introdução: A posição da colocação do implante relativamente à crista óssea tem sido discutida na comunidade científica como fator influenciador de sucesso ou insucesso. Por outro lado a perda ou preservação óssea está intrinsecamente relacionado com fatores como a seleção do sistema de implante, o tipo de implante e a sua conexão. Objetivo: Este trabalho teve como objetivo a análise da bibliografia existente que compara a colocação de implantes a nível da crista óssea (justa cristal) com a colocação de implantes abaixo da crista óssea (sub-cristal) em sinergismo com outros fatores, de forma que seja percecionada a eficácia e sucesso na seleção efetuada. Metodologia: Procedeu-se a uma pesquisa bibliográfica através da identificação de artigos publicados em bases de dados eletrónicas internacionais, PubMed, B-on e Science Direct utilizando palavras-chave e critérios de exclusão e inclusão, que permitiram fazer uma seleção prévia dos artigos a incluir ao longo deste trabalho. Resultados: Após a realização da pesquisa bibliográfica obtiveram-se 63 artigos. A partir da amostra encontrada foram excluídos 26 artigos devido à falta de correspondência do seu conteúdo ao tema proposto e 14 por se encontrarem repetidos ou sem dados comparativos. Nos 23 artigos aceites encontram-se incluídos estudos animais, elementos finitos, revisões e estudos clínicos. Conclusão: Os resultados sugerem que a colocação de implantes em sub-cristal apresenta-se como uma melhor solução na preservação da crista óssea, no entanto há que levar em conta outros fatores associados diretamente ao implante, nomeadamente, a geometria, superfície não polida do colo assim como o tipo de conexão do pilar ao implante, onde foi encontrada uma relativa evidência de melhor eficácia no que respeita à conexão do tipo “cone Morse”.
Resumo:
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone–implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8 mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8 mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone–implant interface.
Resumo:
Objective: To investigate the influence of the presence or absence of keratinized mucosa on the alveolar bony crest level as it relates to different buccal marginal bone thicknesses. Material and methods: In six beagle dogs, the mandibular premolars and first molars were extracted bilaterally. In the right side of the mandible (test), flaps were elevated, and the buccal as well as part of the lingual masticatory mucosa was removed. The flap was released coronally to allow a primary wound closure. In the left side, the wounds were left unsutured with the keratinized mucosa remaining (control). After 3 months of healing, a complete absence of keratinized mucosa was found at the test sites. Two recipient sites were prepared at each side of the mandible, one in the premolar and one in the molar region. A buccal bony ridge width of approximately 1 and 2 mm was obtained at the premolar and molar region, respectively. Implants were installed with the shoulder flush with the buccal alveolar bony crest, and abutments were connected to allow a nonsubmerged healing. At least 2 mm of keratinized mucosa was surrounding the control sites, while at the test sites, the implants were bordered by alveolar mucosa. After 3 months, the animals were euthanized and ground sections obtained. Results: A higher vertical bony crest resorption was observed at the test compared with the control sites both at the premolar and molar regions, the differences being statistically significant. The top of the peri-implant mucosa was located more coronally at the control compared with the test sites. The horizontal resorption measured 1 mm below the implant shoulder was similar at the test and control sites. Only limited differences were found between premolar and molar sites, with the exclusion of the horizontal resorption that was higher at the test compared with the control sites. Conclusions: A higher alveolar buccal bony crest resorption and a more apical soft tissue marginal position should be expected, when implants are surrounded with thin alveolar mucosa at the time of installation, independently of the thickness of the buccal bony crest. © 2013 John Wiley & Sons A/S.
Resumo:
This study evaluated postoperative results of 8 cases of frontal sinus fractures treated by frontal sinus obliteration with autogenous bone from the anterior iliac crest. Patients and methods: The medical charts of patients sequentially treated for frontal sinus fractures by obliteration with autogenous cancellous iliac crest bone in the Oral and Maxillofacial Surgery Division of this institution were reviewed. From those, eight had complete records and adequately described long-term follow-up. All were operated by the same surgical team. Those patients were recalled and independently evaluated by 2 examiners. Radiographs and/or CT scans were available for this evaluation. Associated fractures and complications were noted. The average postoperative follow-up was 7 years, ranging from 3 to 16 years. The main complication was infection. Four patients (50%) had uneventful long-term follow-ups and four (50%) experienced complications requiring reoperation. Based on the studied sample studied the authors conclude that the obliteration with autogenous bone presented a high percentage of complications in this series.
Resumo:
This study evaluated postoperative results of 8 cases of frontal sinus fractures treated by frontal sinus obliteration with autogenous bone from the anterior iliac crest.
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In endoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone- morphogenetic-protein alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent endoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types. Significantly better rates of fusion occurred in endoscopic anterior instrumented scoliosis correction using femoral allograft compared to autologous rib-heads and iliac crest graft. This may be partly explained by the difficulty obtaining sufficient quantities of autologous graft. Lower fusion rates in the autologous graft group appeared to predispose to rod fracture although the clinical consequence of implant failure is uncertain.
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In thoracoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone morphogenetic protein (BMP) alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent thoracoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types.
Resumo:
Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.
Resumo:
Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.
Resumo:
Regeneration of periodontal tissues aims to utilize tissue engineering techniques to restore lost periodontal tissues including the cementum, periodontal ligament and alveolar bone. Regenerative dentistry and its special field regenerative periodontology represent relatively new and emerging branches of translational stem cell biology and regenerative medicine focusing on replacing and regenerating dental tissues to restore or re-establish their normal function lost during degenerative diseases or acute lesions. The regeneration itself can be achieved through transplantation of autologous or allogenic stem cells, or by improving the tissue self-repair mechanisms (e.g. by application of growth factors). In addition, a combination of stem cells or stem cell-containing tissue with bone implants can be used to improve tissue integration and the clinical outcome. As the oral cavity represents a complex system consisting of teeth, bone, soft tissues and sensory nerves, regenerative periodontology relies on the use of stem cells with relatively high developmental potential. Notably, the potential use of pluripotent stem cell types such as human embryonic stem cells or induced pluripotent stem cells is still aggravated by ethical and practical problems. Thus, other cellular sources such as those readily available in the postnatal craniofacial area and particularly in oral structures offer a much better and realistic alternative as cellular regenerative sources. In this review, we summarize current knowledge on the oral neural crest-derived stem cell populations (oNCSCs) and discuss their potential in regenerative periodontology.
Resumo:
Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.
Resumo:
Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures Purpose The aim of this study was to compare sinus augmentation with rhBMP-2 on a poly-D, L-lactic-co-glycolic acid gelatine (PLPG) sponge with sinus augmentation with autologous pelvic cancellous bone in the maxillary sinus during the placement of different dental Implants Materials and methods Nine adult female sheep were submitted to bilateral sinus-floor elevation In one side (test group) the sinus lift was performed with rhBMP-2 on a PLPG-sponge, while the contralateral side served as the control by using cancellous bone from the iliac crest Three different implants (Branemark (R), 31 (R) and Straumann (R)) were inserted either simultaneously with the sinus augmentation or as a two staged procedure 6 weeks later The animals were sacrificed at 6 and 12 weeks for histological and histomorphometrical evaluations during which bone-to-implant contact (BIC) and bone density (BD) were evaluated Results BD and BIC were significantly higher at 12 weeks in the test group if the Implants were placed at the time of the sinus lift (p < 0 05) No difference was observed between the different implant systems or positions Conclusions The use of rhBMP-2 with PLPG-sponge increased BIC as well as BD in the augmented sinuses if compared to autologous bone Different implant systems and positions of the implants had no effect on BIC or BD (C) 2010 European Association for Cranio-Maxillo-Facial Surgery
Resumo:
Purpose: The aim of the present study was to investigate the healing, integration, and maintenance of autogenous onlay bone grafts and implant osseointegration either loaded in the early or the delayed stages. Materials and Methods: A total of 5 male clogs received bilateral blocks of onlay bone grafts harvested from the contralateral alveolar ridge of the mandible. On one side, the bone block was secured by 3 dental implants (3.5 mm x 13.0 mm, Osseospeed; Astra Tech AB, Molndal, Sweden). Two implants at the extremities of the graft were loaded 2 clays after installation by abutment connection and prosthesis (simultaneous implant placement group); the implant in the middle remained unloaded and served as the control. On the other side, the block was fixed with 2 fixation screws inserted in the extremities of the graft. Four weeks later, the fixation screws were replaced with 3 dental implants. The loading procedure (delayed implant placement group) was performed 2 clays later, as described for the simultaneous implant placement sites. The animals were sacrificed 12 weeks after the grafting procedure. Implant stability was measured through resonance frequency analysis. The bone volume and density were assessed on computed tomography. The bone to implant contact and bone area in a region of interest were evaluated on histologic slides. Results: The implant stability quotient showed statistical significance in favor of the delayed loaded grafts (P=.001). The bone-to-implant contact (P=.008) and bone area in a region of interest (P=0.005) were significantly greater in the delayed group. Nevertheless, no difference was found in terms of graft volume and density between the early loaded and delayed-loaded approaches. Conclusions: The protocol in which the implant and bone graft were given delayed loading allows for effective quality of implant osseointegration and stabilization, with healing and remodeling occurring in areas near the implant resulting in denser bone architecture. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Sing 68:825-832, 2010