104 resultados para Benzimidazole amidine
Resumo:
Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Resumo:
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
Resumo:
AIM: [(18)F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. PATIENTS, METHODS: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. RESULTS: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. CONCLUSION: Treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion.
Resumo:
Over the past 30 years, benzimidazoles have increasingly been used to treat cystic echinococcosis (CE). The efficacy of benzimidazoles, however, remains unclear. We systematically searched MEDLINE, EMBASE, SIGLE, and CCTR to identify studies on benzimidazole treatment outcome. A large heterogeneity of methods in 23 reports precluded a meta-analysis of published results. Specialist centres were contacted to provide individual patient data. We conducted survival analyses for cyst response defined as inactive (CE4 or CE5 by the ultrasound-based World Health Organisation [WHO] classification scheme) or as disappeared. We collected data from 711 treated patients with 1,308 cysts from six centres (five countries). Analysis was restricted to 1,159 liver and peritoneal cysts. Overall, 1-2 y after initiation of benzimidazole treatment 50%-75% of active C1 cysts were classified as inactive/disappeared compared to 30%-55% of CE2 and CE3 cysts. Further in analyzing the rate of inactivation/disappearance with regard to cyst size, 50%-60% of cysts <6 cm responded to treatment after 1-2 y compared to 25%-50% of cysts >6 cm. However, 25% of cysts reverted to active status within 1.5 to 2 y after having initially responded and multiple relapses were observed; after the second and third treatment 60% of cysts relapsed within 2 y. We estimated that 2 y after treatment initiation 40% of cysts are still active or become active again. The overall efficacy of benzimidazoles has been overstated in the past. There is an urgent need for a pragmatic randomised controlled trial that compares standardized benzimidazole therapy on responsive cyst stages with the other treatment modalities.
Resumo:
The oral route is the most frequently used method of drug intake in humans. Oral administration of drugs to laboratory animals such as mice typically is achieved through gavage, in which a feeding needle is introduced into the esophagus and the drug is delivered directly into the stomach. This method requires technical skill, is stressful for animals, and introduces risk of injury, pain and morbidity. Here we investigated another method of drug administration. The benzimidazole derivative albendazole was emulsified in commercially available honey and administered to mice by voluntary feeding or gavage. Mice that received albendazole by either gavage or honey ingestion had virtually identical levels of serum albendazole sulfoxide, indicating that uptake and metabolism of albendazole was similar for both administration techniques. In addition, dosing mice with the albendazole-honey mixture for 8 wk had antiparasitic activity comparable to earlier studies using gavage for drug administration. Compared with gavage, voluntary ingestion of a drug in honey is more rapid, less stressful to the animal, and less technically demanding for the administrator. Because of its low cost and ready availability, honey presents a viable vehicle for drug delivery.
Resumo:
Epidemiological studies have demonstrated that most humans infected with Echinococcus spp. exhibit resistance to disease. When infection leads to disease, the parasite is partially controlled by host immunity: in case of immunocompetence, the normal alveolar echinococcosis (AE) or cystic echinococcosis (CE) situation, the metacestode grows slowly, and first clinical signs appear years after infection; in case of impaired immunity (AIDS; other immunodeficiencies), uncontrolled proliferation of the metacestode leads to rapidly progressing disease. Assessing Echinococcus multilocularis viability in vivo following therapeutic interventions in AE patients may be of tremendous benefit when compared with the invasive procedures used to perform biopsies. Current options are F18-fluorodeoxyglucose-positron emission tomography (FDG-PET), which visualizes periparasitic inflammation due to the metabolic activity of the metacestode, and measurement of antibodies against recEm18, a viability-associated protein, that rapidly regresses upon metacestode inactivation. For Echinococcus granulosus, similar prognosis-associated follow-up parameters are still lacking but a few candidates may be listed. Other possible markers include functional and diffusion-weighted Magnetic Resonance Imaging (MRI), and measurement of products from the parasite (circulating antigens or DNA), and from the host (inflammation markers, cytokines, or chemokines). Even though some of them have been promising in pilot studies, none has been properly validated in an appropriate number of patients until now to be recommended for further use in clinical settings. There is therefore still a need to develop reliable tools for improved viability assessment to provide the sufficient information needed to reliably withdraw anti-parasite benzimidazole chemotherapy, and a basis for the development of new alternative therapeutic tools.
Resumo:
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Resumo:
The human cytomegalovirus UL97 kinase, an important target of antiviral therapy, has an impact on at least two distinct phases of viral replication. Compared with wild-type virus, the UL97 deletion mutant exhibits an early replication defect that reduces DNA accumulation by 4- to 6-fold, as well as a late capsid maturation defect responsible for most of the observed 100- to 1000-fold reduction in replication. Block-release experiments with the antiviral 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)-benzimidazole revealed an important role for UL97 kinase in capsid assembly. Although cleavage of concatemeric DNA intermediates to unit-length genomes remained unaffected, progeny mutant virus maturation was delayed, with accumulation of progeny at significantly reduced levels compared with wild type after release of this block. Transmission electron microscopy confirmed the aberrant accumulation of empty A-like capsids containing neither viral DNA nor an internal scaffold structure, consistent with a failure to stably package DNA in mutant virus-infected cells. The function of UL97 in DNA synthesis as well as capsid assembly suggests that protein phosphorylation mediated by this herpesvirus-conserved kinase increases the efficiency of these two distinct phases of virus replication.
Resumo:
This report presents evidence that a reduced pyrrolo[1,2-a]benzimidazole (PBI) cleaves DNA as a result of phosphate alkylation followed by hydrolysis of the resulting phosphate triester. The base-pair specificity of the phosphate alkylation results from Hoogsteen-type hydrogen bonding of the reduced PBI in the major groove at only A.T and G.C base pairs. Alkylated phosphates were detected by 31P NMR and the cleavage products were detected by 1H NMR and HPLC. Evidence is also presented that a reduced PBI interacts with DNA in the major groove rather than in the minor groove or by intercalation.
Resumo:
Diferentes complexos de cobre(II), contendo ligantes do tipo base de Schiff e um grupamento imidazólico, com interesse bioinorgânico, catalítico e como novos materiais, foram preparados na forma de sais perclorato, nitrato ou cloreto e caracterizados através de diferentes técnicas espectroscópicas (UV/Vis, IR, EPR, Raman) e espectrometria de massa Tandem (ESI-MS/MS), além de análise elementar, condutividade molar e medidas de propriedades magnéticas. Alguns destes compostos, obtidos como cristais adequados, tiveram suas estruturas determinadas por cristalografia de raios-X. As espécies di- e polinucleares contendo pontes cloreto, mostraram desdobramentos das hiperfinas nos espectros de EPR, relacionados à presença do equilíbrio com a respectiva espécie mononuclear, devido à labilidade dos íons cloretos, dependendo do contra-íon e do tipo de solvente utilizado. Adicionalmente, em solução alcalina, estes compostos estão em equilíbrio com as correspondentes espécies polinucleares, onde os centros de cobre estão ligados através de um ligante imidazolato. Em meio alcalino, estes compostos polinucleares contendo ponte imidazolato foram também isolados e caracterizados por diferentes técnicas espectroscópicas e magnéticas. Através da variação estrutural e também do ligante-ponte foi possível modular o fenômeno da interação magnética entre os íons de cobre em estruturas correlatas di- e polinucleares. Os respectivos parâmetros magnéticos foram obtidos com ajuste das curvas experimentais de XM vs T, correlacionando-se muito bem com a geometria, ângulos e distâncias de ligação entre os íons, quando comparado com outros complexos similares descritos na literatura. Posteriormente, estudaram-se os fatores relacionados com a reatividade de todas essas espécies como catalisadores na oxidação de substratos de interesse (fenóis e aminas), através da variação do tamanho da cavidade nas estruturas cíclicas ou de variações no ligante coordenado ao redor do íon metálico. Vários deles se mostraram bons miméticos de tirosinases e catecol oxidases. Um novo complexo-modelo da citocromo c oxidase (CcO), utilizando a protoporfirina IX condensada ao quelato N,N,-bis[2-(1,2-metilbenzimidazolil)etil]amino e ao resíduo de glicil-L-histidina, foi sintetizado e caracterizado através de diferentes técnicas espectroscópicas, especialmente EPR. A adição de H2O2 ao sistema completamente oxidado, FeIII/CuII, a -55°C, ou o borbulhamento de oxigênio molecular a uma solução do complexo na sua forma reduzida, FeII/CuI, saturada de CO, resultou na formação de adutos com O2, de baixo spin, estáveis a baixas temperaturas.
Resumo:
A wide variety of chiral succinimides have been prepared in high yields and enantioselectivities by asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides under very mild reaction conditions using a bifunctional benzimidazole-derived organocatalyst. Computational and NMR studies support the hydrogen-bonding activation role of the catalyst and the origin of the stereoselectivity of the process.
Resumo:
The use of a trans-cyclohexanediamine benzimidazole derivative as a hydrogen-bond catalyst for the electrophilic amination of cyclic 1,3-dicarbonyl compounds is herein presented. High yields and enantioselectivities varying from moderate to excellent are generally obtained using mild reaction conditions and as low as 1 mol% of catalyst loading.
Resumo:
Bifunctional chiral 2-aminobenzimidazole derivatives 1 and 2 catalyze the enantioselective stereodivergent α-chlorination of β-ketoesters and 1,3-diketone derivatives with up to 50% ee using N-chlorosuccinimide (NCS) or 2,3,4,4,5,6-hexachloro-2,5-cyclohexadien-1-one as electrophilic chlorine sources.
Resumo:
Bifunctional chiral primary amine 8 containing an (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-benzimidazole unit is used as a general organocatalyst for the Michael addition of α,α-branched aldehydes to nitroalkenes and maleimides. The reactions take place, with 20 mol % of catalyst in dichloromethane at rt for nitroalkenes and with 15 mol % catalyst loading in toluene at 10 °C for maleimides, in good yields and enantioselectivities. DFT calculations demonstrate the bifunctional character of this organocatalyst activating the aldehyde by enamine formation and the Michael acceptor by double hydrogen bonding.