599 resultados para Antisense Oligodeoxynucleotides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant melanoma is an aggressive form of skin cancer that is highly resistant to conventional therapies. The melanoma inhibitor of apoptosis protein is a potent inhibitor of apoptosis and is overexpressed in melanoma cells, but undetectable in most normal tissues including melanocytes. We designed 20-mer phosphorothioate antisense oligonucleotides complementary to five putatively single-stranded sites on the melanoma inhibitor of apoptosis protein mRNA and investigated their ability to sensitize G361 melanoma cells to cisplatin. Inhibition of melanoma inhibitor of apoptosis protein mRNA and protein expression were measured by real-time polymerase chain reaction and immunoblotting. Cell viability and apoptosis were quantitated by colorimetric viability assays and by annexin V staining, respectively. Oligonucleotide M706 was identified as the most efficient antisense sequence which downregulated melanoma inhibitor of apoptosis protein mRNA and protein levels in G361 cells by 68 and 78%, respectively. The specificity of target downregulation was confirmed using scrambled sequence control oligonucleotides that only marginally decreased melanoma inhibitor of apoptosis protein expression. Whereas downregulation of melanoma inhibitor of apoptosis protein moderately inhibited cell growth by 26%, in combination with cisplatin, this resulted in a supra-additive effect with almost 57% reduction in G361 cell viability compared with cisplatin alone (17%) (P<0.05). Cell death was mainly due to apoptosis as demonstrated by a 3- to 4-fold increase in annexin V-positive cells and typical morphological changes compared with controls. In summary, we describe a new antisense oligonucleotide that efficiently downregulates melanoma inhibitor of apoptosis protein expression and sensitizes melanoma cells to cisplatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of traditional anti-cancer agents is hampered by toxicity to normal tissues, due to the lack of specificity for malignant cells. Recent advances in our understanding of molecular genetics and tumor biology have led to the identification of signaling pathways and their regulators implicated in tumorigenesis and malignant progression. Consequently, novel biological agents were designed which specifically target key regulators of cell survival and proliferation activated in malignant cells and thus are superior to unspecific cytotoxic agents. Antisense molecules comprising conventional single-stranded antisense oligonucleotides (ASO) and small interfering RNA (siRNA) inhibit gene expression on the transcript level. Thus, they specifically target the genetic basis of cancer and are particularly useful for inhibiting the expression of oncogenes the protein products of which are inaccessible to small molecules or inhibitory antibodies. Despite the somewhat disappointing results of recent antisense oncology trials, the identification of new cancer targets and ongoing progress in ASO and siRNA technology together with improvements in tumor targeted delivery have raised new hopes that this fascinating intervention concept will eventually translate into enhanced clinical efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This minireview highlights three aspects of our recent work in the area of sugar modified oligonucleotide analogues. It provides an overview over recent results on the conformationally constrained analogue tricyclo-DNA with special emphasis of its antisense properties, it summarizes results on triple-helix forming oligodeoxynucleotides containing pyrrolidino-nucleosides with respect to DNA recognition via the dual recognition mode, and it highlights the advantageous application of the orthogonal oligonucleotidic pairing system homo-DNA in molecular beacons for DNA diagnostics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrrolidino pseudo-C-nucleosides are isosteres of natural deoxynucleosides which are protonated at the pyrrolidino ring nitrogen under physiological conditions. As constituents of a triplex forming oligodeoxynucleotide (TFO), the positive charge is expected to stabilise DNA triple helices via electrostatic interactions with the phosphodiester backbone of the target DNA. We describe the synthesis of the pyrrolidino isocytidine pseudonucleoside and the corresponding phosphoramidite building block and its incorporation into TFOs. Such TFOs show substantially increased DNA affinity compared to unmodified oligodeoxynucleotides. The increase in affinity is shown to be due to the positive charge at the pyrrolidino subunit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have incorporated pyrrolidino-C-nucleosides (pyrrolidino-pseudonucleosides) containing the base uracil and N-1-methyl uracil into oligodeoxynucleotides and compared their thermal duplex and triplex stabilities with unmodified or pseudouridine-containing oligodeoxynucleotides. We find relative destabilizations of triplex formation by ca. -13 to -1 degrees C per modification (relative to thymidine) in a strongly sequence dependent mode. Duplex formation is less destabilizing and more homogeneous with -4 to -2 degrees C per modification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric alphaN(7)-, betaN(7)-, alphaN(9)- and betaN(9)-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 x 10(6) and 1.3 x 10(8) M(-1). The following relative order in Z x X-Y base-triple stabilities was found: Z = alphaN(7)ap: T-A > A-T> C-G approximately G-C; Z = betaN(7)ap: A-T > C-G > G-C > T-A; Z = alphaN(9)ap: A-T = G-C > T-A > C-G; and Z = betaN(9)ap: G-C > A-T > C-G > T-A